Geometrie zum Angreifen und zum ,,Begreifen"

Geometrie kompetenzorientiert von \mathbf{A} bis \mathbf{Z}

,ZZum Denken provozieren - zum Lernen motivieren!"‘ , Vom Be - greifen ist es nicht weit zum Begreifen"

Mehr als 2000 Seiten Kopiepvorlagen für das „begreifende Erarbeiten" der geometrischen Flächen und Körper im Mathematikunterricht der Sekundarstufe 1 (NMS/HS und AHS) sowie der Sekundarstufe 2, aber auch für GZ/DG/TZ und für Mineralogie. für GZ/DG/TZ, für Physik, für Mineralogie, aber auch für Geschichte.

Inhalte:

Längenmaße, Flächenmaße, Vierecke und Dreiecke, Raummaße, Würfel, Massenmaße, Quader, Quader und Würfel mit Ausschnitten, Prismen über Dreiecks- und Vierecksflächen, zusammengesetzte Körper, Besondere Prismen, Pythagoräischer Lehrsatz im Schneidebeweis, Raumdiagonalen an Quadern und Würfeln, quadratische und rechteckige Pyramiden, die Cheopspyramide und die Knickpyramide des Snofru als Querverbindung zur Kulturgeschichte, Volumenbeweise für die Pyramiden, Ab- und Ausschnitte von Pyramiden, Pyramidenstümpfe, Kathetensatz und Höhensatz, Kreis, Zylinder und Zylinderschnitte, Kegel und Kegelstümpfe, Volumenbeweis für den Kegel, Kegelschnitte am realen Modell, Platonische, Archimedische und Catalanische Körper, Geom. Modelle für GZ/DG/TZ, Geometrische Körper der Mineralogie: Die 32 Kristallklassen, "Spielend lernen" mit geometr. Lernspielen, Administrative Hilfen für den Unterricht, Algebra geometrisch gesehen, besonders interessante ergänzende Modelle, die Camera Obscura als Querverbindung zur Physik und das Castel del Monte als Querverbindung zu Geschichte.

Besonders geeignet für die innere Differenzierung und als Motivation zu selbständigem Wissens- und Kompetenzen-Erwerb

Durch intensive praktische Betätigung Förderung der Feinmotorik und damit auch beider Gehirnhälften!
Zur Erarbeitung, zur Festigung, für Aufgaben und für Supplierunterricht
Für den gesamten Kern- und Erweiterungsbereich des Lehrbereiches Geometrie

Bitte beachten Sie, dass Sie durch den Kauf der fertigen Mappen oder der pdf-Dateien für die Kopiervorlagenmappen nur für Sie persönlich das Kopierrecht für die Arbeit mit den Schülern Ihrer eigenen Schule erworben haben. Die Weitergabe der Dateien oder der Mappen an KollegInnen ist urheberrechtlich untersagt!

Die Weitergabe wäre auch autistisch schwerst behinderten Kindern gegenüber unfair, da alle Einnahmen aus diesem Werk für deren Therapien und Förderung gewidmet sind!

Liebe Kolleginnen und Kollegen!

Mit dieser Kopiervorlagenmappe möchte ich Ihnen die Möglichkeit geben, Geometrie und die dazugehörenden Flächen- und Körperberechnungen „handgreiflich" - haptisch - zu unterrichten. Vom „Be - greifen" zum „Begreifen" ist es nicht weit!

Ein Blick in praktisch alle Mathematikbücher am Markt zeigt, welches $\mathrm{Maß}$ an Abstraktionsvermögen schon unseren 10-jährigen SchülerInnen abverlangt wird: Von je einem - lieblos auf viel zu dünnes Papier gedruckten - Netz von Würfel und Quader abgesehen, werden praktisch alle geometrischen Körper als Schrägrisse in die 2 Dimensionen der Buchseite gepresst. Dass dabei gerade die vorstellungsschwachen SchülerInnen ,unter die Räder" kommen, ist auf diese Weise nicht zu verhindern.

Die naive Frage der Mutter eines Volksschulkindes, wann es denn eigentlich passiere, dass die Kinder die Freude am Lernen verlieren, sollte uns allen zu denken geben.

Suchen wir doch die Schuld an frustrierten SchülerInnen nicht immer nur bei ihnen selbst und bei ihrer Umwelt, sondern überlegen wir uns auch, wie wir unseren Unterricht anschaulicher, interessanter, sachbezogener gestalten können.

Das Hantieren mit geometrischen Flächen und Körpern ermöglicht altersadäquates Erarbeiten der Eigenschaften sowie der verschiedenen Möglichkeiten, Flächen, Umfänge, Oberflächen und Rauminhalte zu berechnen.

Das Heruntersteigen vom hohen Ross der Kreidemathematik ermöglicht es dem engagierten Lehrer, durch das Einbeziehen des haptischen Aspektes die SchülerInnen an ihrem jeweiligen Leistungsniveau „abzuholen" und sie „auf die gemeinsame Reise in die Welt der Mathematik" mitzunehmen.

Geometrische Flächen und Körper zu verstehen und sich Berechnungsmöglichkeiten (und damit auch Formeln) - mit den Flächen und Körpern in der Hand weitgehend selbst erarbeiten (und dann zu merken) ist ,in".

Sinnloses Auswendiglernen von Formeln ist ,,out"‘!
In diesem Sinne wünsche ich Ihnen viel Freude bei einer sehr produktiven neu orientierten Unterrichtsarbeit mit Ihren SchülerInnen!!

Manfred Pfennich
P.S.: Für Ihre Rückmeldungen und Anregungen danke ich sehr herzlich. (Manfred.Pfennich@aon.at)

Liebe Schülerin, lieber Schüler!

Wenn Dir Geometrie nicht gerade besonders liegt und Du damit vielleicht Deine Probleme hast, aber auch wenn Geometrie für Dich besonders interessant ist, dann ist diese Kopiervorlagensammlung für Dich gerade das Richtige. Aus meiner eigenen Schülerzeit weiß ich, dass die LehrerInnen für die Probleme, Wünsche und Interessen der einzelnen Schüler viel zu wenig Zeit haben. Auch Modelle aus der Lehrmittelsammlung, die vielleicht einmal durch die Reihen gehen und dann wieder im Lehrmittelzimmer verwahrt werden, helfen nicht wirklich, Geometrie zu „be - greifen".

Aus diesem Wissen heraus und um Dir einen leichteren und besonders interessanten Zugang zur Geometrie zu ermöglichen habe ich in vielen tausend Stunden dieses Werk mit seinen vielen Arbeitsblättern und Modellen erstellt. Viele Modelle kannst Du Dir zum Erarbeiten oder zur Vertiefung bauen. Wenn Du an Geometrie ein besonderes Interesse hast, kannst Du ruhig auch Modelle voraus bauen und Dir - wo es darum geht - Wege zu ihrer Berechnung überlegen. Nimm vor dem Zusammenbauen alle Maße ab und notiere sie Dir. Dann schau dir diese Maße an und überlege, welche Du überhaupt für die Berechnungen brauchst. Überlege auch, wo es einfachere Berechnungswege gibt. Lass Dir nicht alles von Deinen Lehrern „vorkauen". Du wirst vieles alleine schaffen!

Durch das Bauen der Modelle, durch das „Han(d)tieren" damit und durch die Möglichkeit sie drehen und wenden zu können, kannst Du sie viel besser „be - greifen" als nur durch eine zweidimensionale Zeichnung. Übrigens gibt es auch viele Modelle, die gar keine Berechnung verlangen. Baue diese einfach aus Freude an der interessanten Form oder an der Schönheit dieser Modelle!

Jedenfalls wünsche ich Dir viel Freude und Erfolg in der Arbeit mit diesen Arbeitsblättern und Modellen!

,ZZum Denken provozieren - zum Lernen motivieren!"‘ und
 ${ }_{\text {,Vom Be - greifen ist es nicht weit zum Begreifen" }}$

Das sind - zusammenfassend gesagt - jene methodischen Wege, die mich als Autor des nun für den Download freigegebenen Kopiervorlagenwerkes

„Geometrische Flächen und Körper zum Be - greifen"

mehr als 35 Jahre lang in meiner Unterrichtsarbeit als Mathematiklehrer, aber auch als Physik/Chemie- und Werkerziehungslehrer, zusätzlich auch in meiner Arbeit als Medienerzieher und Lehrerfortbildner geprägt haben und die in diesem Werk zum Ausdruck kommen. Meine eigene Unterrichtserfahrung motivierte mich, mich speziell um schulfrustrierte leistungsschwache aber auch besonders leistungsstarke Schüler anzunehmen, denen die bisher üblichen Unterrichtsmethoden besonders in der Geometrie im Mathematikunterricht nicht gerecht werden.

Vom „Be - greifen" ist es wirklich nicht weit zum „Begreifen", das gilt ganz besonders bei jenen Schülern, die sonst durch „Kreidegeometrie" demotiviert werden. Sie können sich oft unter den zu berechnenden Flächen und Körpern nichts vorstellen, da ihnen wortwörtlich das „Be - greifen" fehlt. Durch die Arbeit an und mit den geometrischen Flächen und Körpern dieser Sammlung entsteht wirkliches Interesse dafür. Es geht in der Geometrie also keineswegs mehr um braves Auswendiglernen von Formeln, sondern um deren eigenständiges Erarbeiten und um das Verstehen geometrischer Zusammenhänge.

Sinnloses Auswendiglernen von Formeln ist „out"، mathematisches Verstehen und Interesse für Geometrie ist „in"! Motivierte und interessierte Schüler sind der beste Dank für an neuen Methoden interessierte und engagierte Lehrerinnen und Lehrer.

Die rund 800 Kopiervorlagen in schwarz/weiß können auch in gedruckter und in Klarsichthüllen eingelegter Form (3 dicke 4-Ring-Büroordner) von den Schulen bei mir um insgesamt $330 €$ (auch als „Lehrmittel eigener Wahl"!!!) gekauft werden. Wer die 3 Bände in stundenlanger Arbeit selbst ausdrucken und einfächern möchte, kann auch die genau für den Ausdruck vorbereiteten Dateien um $75 €$ kaufen. Der Reinerlös aus beiden Varianten geht an mein
„Sozialwerk für autistische Kinder".
Sie bekommen dafür natürlich eine Rechnung. Beide Varianten sind von der Mehrwertsteuer befreit.

[^0]
Geometrie zum Angreifen und zum „Begreifen"

Geometrie kompetenzorientiert

„Zum Denken provozieren - zum Lernen motivieren!"
 "Vom Be - greifen ist es nicht weit zum Begreifen"

Eine Buchreihe zum „begreifenden Erarbeiten" der geometrischen Flächen und Körper im Mathematikunterricht von der Volksschule über die Sekundarstufe 1 (NMS/HS und AHS) bis zur Sekundarstufe 2

Der Druck der Bände erfolgt als Farb-Laserdruck einseitig auf Kopierkarton mit $160 \mathrm{~g} / \mathrm{m}^{2}$ in der Übergröße A4+. Die Drucke werden in 4-Ring-Ordner eingehängt und das ermöglicht Ihnen die leichte Entnahme zum Kopieren für Ihren Unterricht bzw. zum Bauen der Modelle.

Band 1:

Methodisch - didaktische und kompetenzorientierte Hinweise, 51 Arbeitsblätter und $\mathbf{6 2}$ Kartonblätter mit über 150 Modellen

Längenmaße, Flächenmaße, Vierecke und Dreiecke, Raummaße, Würfel, Massenmaße, Winkel, Winkelfunktionen Preis: 95 €

Band 2:

Methodisch - didaktische und kompetenzorientierte Hinweise, 143 Seiten mit Modellen zum Selbstbauen

Prismen (Würfel, Quader, Raumdiagonalen...), Pythag.Lehrsatz, Pyramiden (quadratische und rechteckige, Cheops und Snofru-Pyramide...) Katheten- und Höhensatz, Kreis, Zylinder und Zylinderschnitte Preis: 95 €

Band 3:

Methodisch - didaktische und kompetenzorientierte Hinweise zu den unten angeführten Lehrbereichen der Geometrie.
140 Seiten auf Karton mit Modellen zum Selbstbauen und wirklich „be-greifen", mit vielen Informationsblättern zum Konstruktionsgang schwieriger Modelle

Kegel, Kegelschnitte an verschiedenen Kegeln und mit einem Modell für den
Bau eines Doppelkegels für Hyperbelmodelle, Platonische und Archimedische Körper, viele interessante ergänzende Modelle, selbstgemachte Lernspiele für die Geometrie Preis: 95 €

Band 4:

Methodisch - didaktische und kompetenzorientierte Hinweise zu den unten angeführten Lehrbereichen der Geometrie.
140 Seiten auf Karton mit Modellen zum Selbstbauen und wirklich „be-greifen", mit vielen Informationsblättern zum Konstruktionsgang schwieriger Modelle

Geometrische Körper für GZ/DG/TZ, Geometrische Körper der Mineralogie: Die Kristalle, viele interessante ergänzende Modelle, Eine didaktische Reihe mit Prismen, Pyramiden und Kegeln Preis: 95 €

Da die Einnahmen aus dem Verkauf der Bände (und der Dateien) für das „Sozialwerk für autistische Kinder" gewidmet sind, kann der Druck der Bände erst nach dem Eintreffen der Bestellung und der Überweisung erfolgen. Es ist daher mit einer Zeit von etwa 2 Wochen bis zur Auslieferung zu rechnen.

Bestellungen bitte per E-Mail (mit genauer Adresse und Telefonnummer) an Manfred.Pfennich@aon.at.

Nach Erhalt der Rechnung bitte den Rechnungsbetrag überweisen an: „Sozialwerk für autistische Kinder"

Bei Kauf aller 4 Bände gibt es einen ermäßigten Sonderpreis von $320 €$.

Bei Kauf aller 4 Bände können dann noch die hier im Anhang einsehbaren und auf eine Person lizenzierten

$$
\text { Dateien um } 60 €
$$

dazugekauft werden. Sie sind sogar um 512 Seiten zum Bau der dualen Platonischen und Archimedischen geometrischen Körper zusätzlich erweitert .

Jede weitere Lizenz für Lehrer an der gleichen Schule kostet 25 €. Alle Preise sind gem. UStG von der MWSt befreit.

Leider können aus verständlichen Gründen keine langen

 Zahlungsziele vereinbart werden!
Die 4 Bände sind eine grundlegende Auswahl

 aus den nachfolgenden Dateien!
Geometrie zum Angreifen und zum ,,Begreifen"

Geometrie kompetenzorientiert von \mathbf{A} bis \mathbf{Z}

,ZZum Denken provozieren - zum Lernen motivieren!"‘ , Vom Be - greifen ist es nicht weit zum Begreifen"

Mehr als 2000 Seiten Kopiepvorlagen für das „begreifende Erarbeiten" der geometrischen Flächen und Körper im Mathematikunterricht der Sekundarstufe 1 (NMS/HS und AHS) sowie der Sekundarstufe 2, aber auch für GZ/DG/TZ und für Mineralogie. für GZ/DG/TZ, für Physik, für Mineralogie, aber auch für Geschichte.

Inhalte:

Längenmaße, Flächenmaße, Vierecke und Dreiecke, Raummaße, Würfel, Massenmaße, Quader, Quader und Würfel mit Ausschnitten, Prismen über Dreiecks- und Vierecksflächen, zusammengesetzte Körper, Besondere Prismen, Pythagoräischer Lehrsatz im Schneidebeweis, Raumdiagonalen an Quadern und Würfeln, quadratische und rechteckige Pyramiden, die Cheopspyramide und die Knickpyramide des Snofru als Querverbindung zur Kulturgeschichte, Volumenbeweise für die Pyramiden, Ab- und Ausschnitte von Pyramiden, Pyramidenstümpfe, Kathetensatz und Höhensatz, Kreis, Zylinder und Zylinderschnitte, Kegel und Kegelstümpfe, Volumenbeweis für den Kegel, Kegelschnitte am realen Modell, Platonische, Archimedische und Catalanische Körper, Geom. Modelle für GZ/DG/TZ, Geometrische Körper der Mineralogie: Die 32 Kristallklassen, "Spielend lernen" mit geometr. Lernspielen, Administrative Hilfen für den Unterricht, Algebra geometrisch gesehen, besonders interessante ergänzende Modelle, die Camera Obscura als Querverbindung zur Physik und das Castel del Monte als Querverbindung zu Geschichte.

Besonders geeignet für die innere Differenzierung und als Motivation zu selbständigem Wissens- und Kompetenzen-Erwerb

Durch intensive praktische Betätigung Förderung der Feinmotorik und damit auch beider Gehirnhälften!
Zur Erarbeitung, zur Festigung, für Aufgaben und für Supplierunterricht
Für den gesamten Kern- und Erweiterungsbereich des Lehrbereiches Geometrie

Bitte beachten Sie, dass Sie durch den Kauf der fertigen Mappen oder der pdf-Dateien für die Kopiervorlagenmappen nur für Sie persönlich das Kopierrecht für die Arbeit mit den Schülern Ihrer eigenen Schule erworben haben. Die Weitergabe der Dateien oder der Mappen an KollegInnen ist urheberrechtlich untersagt!

Die Weitergabe wäre auch autistisch schwerst behinderten Kindern gegenüber unfair, da alle Einnahmen aus diesem Werk für deren Therapien und Förderung gewidmet sind!

Liebe Kolleginnen und Kollegen!

Mit dieser Kopiervorlagenmappe möchte ich Ihnen die Möglichkeit geben, Geometrie und die dazugehörenden Flächen- und Körperberechnungen „handgreiflich" - haptisch - zu unterrichten. Vom „Be - greifen" zum „Begreifen" ist es nicht weit!

Ein Blick in praktisch alle Mathematikbücher am Markt zeigt, welches $\mathrm{Maß}$ an Abstraktionsvermögen schon unseren 10-jährigen SchülerInnen abverlangt wird: Von je einem - lieblos auf viel zu dünnes Papier gedruckten - Netz von Würfel und Quader abgesehen, werden praktisch alle geometrischen Körper als Schrägrisse in die 2 Dimensionen der Buchseite gepresst. Dass dabei gerade die vorstellungsschwachen SchülerInnen ,unter die Räder" kommen, ist auf diese Weise nicht zu verhindern.

Die naive Frage der Mutter eines Volksschulkindes, wann es denn eigentlich passiere, dass die Kinder die Freude am Lernen verlieren, sollte uns allen zu denken geben.

Suchen wir doch die Schuld an frustrierten SchülerInnen nicht immer nur bei ihnen selbst und bei ihrer Umwelt, sondern überlegen wir uns auch, wie wir unseren Unterricht anschaulicher, interessanter, sachbezogener gestalten können.

Das Hantieren mit geometrischen Flächen und Körpern ermöglicht altersadäquates Erarbeiten der Eigenschaften sowie der verschiedenen Möglichkeiten, Flächen, Umfänge, Oberflächen und Rauminhalte zu berechnen.

Das Heruntersteigen vom hohen Ross der Kreidemathematik ermöglicht es dem engagierten Lehrer, durch das Einbeziehen des haptischen Aspektes die SchülerInnen an ihrem jeweiligen Leistungsniveau „abzuholen" und sie „auf die gemeinsame Reise in die Welt der Mathematik" mitzunehmen.

Geometrische Flächen und Körper zu verstehen und sich Berechnungsmöglichkeiten (und damit auch Formeln) - mit den Flächen und Körpern in der Hand weitgehend selbst erarbeiten (und dann zu merken) ist ,in".

Sinnloses Auswendiglernen von Formeln ist ,,out"‘!
In diesem Sinne wünsche ich Ihnen viel Freude bei einer sehr produktiven neu orientierten Unterrichtsarbeit mit Ihren SchülerInnen!!

Manfred Pfennich
P.S.: Für Ihre Rückmeldungen und Anregungen danke ich sehr herzlich. (Manfred.Pfennich@aon.at)

Liebe Schülerin, lieber Schüler!

Wenn Dir Geometrie nicht gerade besonders liegt und Du damit vielleicht Deine Probleme hast, aber auch wenn Geometrie für Dich besonders interessant ist, dann ist diese Kopiervorlagensammlung für Dich gerade das Richtige. Aus meiner eigenen Schülerzeit weiß ich, dass die LehrerInnen für die Probleme, Wünsche und Interessen der einzelnen Schüler viel zu wenig Zeit haben. Auch Modelle aus der Lehrmittelsammlung, die vielleicht einmal durch die Reihen gehen und dann wieder im Lehrmittelzimmer verwahrt werden, helfen nicht wirklich, Geometrie zu „be - greifen".

Aus diesem Wissen heraus und um Dir einen leichteren und besonders interessanten Zugang zur Geometrie zu ermöglichen habe ich in vielen tausend Stunden dieses Werk mit seinen vielen Arbeitsblättern und Modellen erstellt. Viele Modelle kannst Du Dir zum Erarbeiten oder zur Vertiefung bauen. Wenn Du an Geometrie ein besonderes Interesse hast, kannst Du ruhig auch Modelle voraus bauen und Dir - wo es darum geht - Wege zu ihrer Berechnung überlegen. Nimm vor dem Zusammenbauen alle Maße ab und notiere sie Dir. Dann schau dir diese Maße an und überlege, welche Du überhaupt für die Berechnungen brauchst. Überlege auch, wo es einfachere Berechnungswege gibt. Lass Dir nicht alles von Deinen Lehrern „vorkauen". Du wirst vieles alleine schaffen!

Durch das Bauen der Modelle, durch das „Han(d)tieren" damit und durch die Möglichkeit sie drehen und wenden zu können, kannst Du sie viel besser „be - greifen" als nur durch eine zweidimensionale Zeichnung. Übrigens gibt es auch viele Modelle, die gar keine Berechnung verlangen. Baue diese einfach aus Freude an der interessanten Form oder an der Schönheit dieser Modelle!

Jedenfalls wünsche ich Dir viel Freude und Erfolg in der Arbeit mit diesen Arbeitsblättern und Modellen!

,ZZum Denken provozieren - zum Lernen motivieren!"‘ und
 ${ }_{\text {,Vom Be - greifen ist es nicht weit zum Begreifen" }}$

Das sind - zusammenfassend gesagt - jene methodischen Wege, die mich als Autor des nun für den Download freigegebenen Kopiervorlagenwerkes

„Geometrische Flächen und Körper zum Be - greifen"

mehr als 35 Jahre lang in meiner Unterrichtsarbeit als Mathematiklehrer, aber auch als Physik/Chemie- und Werkerziehungslehrer, zusätzlich auch in meiner Arbeit als Medienerzieher und Lehrerfortbildner geprägt haben und die in diesem Werk zum Ausdruck kommen. Meine eigene Unterrichtserfahrung motivierte mich, mich speziell um schulfrustrierte leistungsschwache aber auch besonders leistungsstarke Schüler anzunehmen, denen die bisher üblichen Unterrichtsmethoden besonders in der Geometrie im Mathematikunterricht nicht gerecht werden.

Vom „Be - greifen" ist es wirklich nicht weit zum „Begreifen", das gilt ganz besonders bei jenen Schülern, die sonst durch „Kreidegeometrie" demotiviert werden. Sie können sich oft unter den zu berechnenden Flächen und Körpern nichts vorstellen, da ihnen wortwörtlich das „Be - greifen" fehlt. Durch die Arbeit an und mit den geometrischen Flächen und Körpern dieser Sammlung entsteht wirkliches Interesse dafür. Es geht in der Geometrie also keineswegs mehr um braves Auswendiglernen von Formeln, sondern um deren eigenständiges Erarbeiten und um das Verstehen geometrischer Zusammenhänge.

Sinnloses Auswendiglernen von Formeln ist „out"، mathematisches Verstehen und Interesse für Geometrie ist „in"! Motivierte und interessierte Schüler sind der beste Dank für an neuen Methoden interessierte und engagierte Lehrerinnen und Lehrer.

Die rund 800 Kopiervorlagen in schwarz/weiß können auch in gedruckter und in Klarsichthüllen eingelegter Form (3 dicke 4-Ring-Büroordner) von den Schulen bei mir um insgesamt $330 €$ (auch als „Lehrmittel eigener Wahl"!!!) gekauft werden. Wer die 3 Bände in stundenlanger Arbeit selbst ausdrucken und einfächern möchte, kann auch die genau für den Ausdruck vorbereiteten Dateien um $75 €$ kaufen. Der Reinerlös aus beiden Varianten geht an mein
„Sozialwerk für autistische Kinder".
Sie bekommen dafür natürlich eine Rechnung. Beide Varianten sind von der Mehrwertsteuer befreit.

[^1]
Geometrische Flächen und Körper zum "Be - greifen"

(Geometrie von A bis Z)

A	Längenmaße (und Messübungen dazu)
B	Flächenmaße (und Messübungen dazu)
C	Vierecke und Dreiecke: Verwandlung in Rechtecke
D	Raummaße und Würfel
E	Massenmaße
F	Winkelarten, Winkelsummen und Winkelmaße, Winkelfunktionen
G	Prismen: Quader, sowie Quader u.Würfel mit Ausschnitten
H	Zusammengesetzte Körper (Prismen)
I	Prismen über Dreiecks- und Vierecksflächen
J	Besondere Prismen, Antiprismen und gedrehte Prismen
K	Pythag. Lehrsatz im Schneidebeweis
L	Raumdiagonalen an Quadern und Würfeln
M	Quadratische und rechteckige Pyramiden
N	Volumensbeweise für die Pyramiden
o	Teile von Pyramiden, Ab- und Ausschnitte an Pyramiden
P	Pyramidenstümpfe: Basis und Spitze in Relation
Q	Kathetensatz und Höhensatz
R	Der Kreis / Der Zylinder / Zylinderschnitte
S	Kegel und Kegelstümpfe: Basis und Spitze in Relation
T	Kegelschnitte am realen Modell und ihre Konstruktion
U	Platonische, Archimedische und Catalanische Körper
V	Geometrische Körper arr CDRom "Beispiele und Anregungen" der ADI fuir GZDG
W	Geometr. Körper der Mineralogie: Die Kristallklassen
X	"Spielend" lernen (Formeln festigen mit Spielen)
Y	Administrative Hilfen für den Unterricht
Z	Interessante ergänzende Modelle

Viele Benennungen in der Geometrie und in anderen Wissenschaftsbereichen gehen zurück auf Altgriechische Zahlen und Silben

Zahl	Grundzahlwörter (Kardinalzahl) oft gibt es 3 Geschlechtsformen Hier ist der 1. Fall (Nominativ) angezeigt	Vorsilbe (Präfix)	Wortbeispiele (Derivate)
Fett gedruckt sind hier die in der Geometrie meist gebrauchten Zahlen und Wortbeispiele			
1	عís, μ í $\alpha, ~ \varepsilon ̌ v \%$ [he s, m a, hen]	μ ovo- [mono-]	monochrom
2	סvo [dýo]	ס⿺- [di-]	Distickstoffmonoxid ($\mathrm{N}_{2} \mathrm{O}$)
3	трєǐs, ¢pía [treîs, tría]	т fl [[tri-]	Trigon (Dreieck)
4		тєтр α - [tetra-]	Tetragon (Viereck),Tetraeder
5	$\pi \varepsilon$ vve [pénte]	$\pi \varepsilon v \tau \alpha-[$ penta-]	Pentagon (Fünfeck), Pentagramm
6	$\varepsilon^{\circ} \xi$ [hex]	ε ¢ $¢ \alpha$-[hexa-]	Hexagon, Hexaeder
7	غ́лtá [heptá]	غ̇лtó- [heptá-]	Heptagon
8	òктө́ [oktō]	òкта-[okta-]	Oktagon, Oktaeder
9	غ̇vvéa [ennéa]	ėvvéa-[ennéa-]	Enneagramm
10	ঠغ́кк [déka]	סér α-[déka-]	Dekagon, Dekagramm (= Maß!)
11	દ̌vঠ\&ка [héndeka]	غ́vঠєка- [hendeka-]	
12	$\delta \omega$ бєка [dōdeka]	$\delta \omega \delta \varepsilon \kappa \alpha-$ [dōdeka-]	Dodekaeder
13			
15	$\pi \varepsilon \tau \tau \varepsilon \kappa \alpha i \delta \varepsilon \kappa \alpha$ [pentekaídeka]	16: غ́ккаїঠкка [hekkaídeka]	
17	غлтакаіঠєкх [heptakaídeka] und so weiter		
20	عǐкобı [eíkosi]	عiкоб α - [eikosa-]	Ikosaeder
30	трı́коขта [triákonta]		
50	$\pi \varepsilon v \tau$ ¢́коขта [pentēkonta] und so weiter		
100	غ́катóv [hekatón]	غ́катóv- [hekatón-]	(Hektometer), Hektoliter, Hektar
200			
300		, трıакоба-[triakosa-] und so weiter	
1000	$\chi^{i} \lambda_{101}, \chi^{i} \lambda_{1 \alpha 1}, \chi^{i} \lambda_{1} \alpha[\mathrm{chílioi}] . .$.	$\chi \chi_{10}$ [chilio-]	Kilo(gramm), Kilometer, Kilowatt
2000		ঠıбхλ_{10-} [dis chilio-]	
10000	μ úpıor, -ale - ${ }^{\text {[mýrioi] }}$	μ ррıо- [myrio-]	Myriade (Myriaden)

Geometrie von "ge" (griech.) = Erde und "métrein" (griech.) = messen Geometrie ist also Erdvermessung Diagonale von: dia=durch und gony=Knie, Winkel Das ist die Verbindungsgerade zwischen nicht benachbarten Ecken in einem Polygon Polyeder von: polys/ pole/poly=viel und hédra bzw. hedos=Sitz bzw. Fläche (im Deutschen änderte sich "hedra" zu "- eder", im Englischen wird, "hedra" zu "-hedron" Polyeder $=$ Viefflach, Viefflächner oder Ebenflächner (tetra=vier bei Tetraeder, dieser ist ein Vierflächner) Polygon (Vieleck) von: polys/pole/poly=viel und gony=Knie, Winkel Kathete von "káthetos" = die Herabgelassene, das Lot Die 2 kurzen Seiten im rechtwinkeligen Dreieck
Hypotenuse " von "hypoteíno" = Ich spanne darunter. Die längste Seite im rechtwinkeligen Dreieck, gegenüber dem rechten Winkel Basis von "basis" = Grundlage Symmetrie von "symmetría" = Ebenmaß, Gleichmaß Isometrie von "isos" = gleich und "metrein" $=$ messen, also: "Isometrie" = Längengleichheit Grad von "gradus" = Schritt, Abschnitte / Ein Vollkreis hat 360 Grad (oder 400 Gon = Neugrad) Meter von "métron" = Maß, -messer / als Artikel sind "der" und "das" Meter erlaubt ortho- von "orthos" = recht, richtig ("orthogonal" $=$ rechtwinkelig) peri- von "peri" = um, herum -klin von"klinein" $=$ neigen bzw. geneigt ("triklin" $=$ dreifach geneigt bzw. dreifach abgeschrägt) Komplementärwinkel von "complere" (lat.) = anfüllen Supplementwinkel von "supplere" (lat.) = ergänzen

Empfehlenswerte Links für Lehrer und besonders interessierte SchülerInnen höherer Klassen: >www.de.wikipedia.oeg/wiki/Griechische Zahlw\%C3\%B6rter<
>http://wapedia.mobi/Griechische Zahlen<
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Beispiele für wichtige und häufig verwendete Maßeinheiten des angloamerikanischen Maßsystems (Imperiales Maßsystem):

Jeder Handel, jede handwerkliche und industrielle Produktion, ja vieles in unserem praktischen Leben braucht Messvorgänge. Waren es früher in Europa viele verschiedene lokale Maße, so war die Schaffung des einheitlichen metrischen Maßsystems im Jahre 1875 in Paris ein großer Erfolg. Es ermöglichte erst wirklich den internationalen Handel und standardisierte Produkte wie wir sie heute kennen.

Die meisten Länder der Welt haben das metrische Maßsystem übernommen, so auch Großbritannien, wo das prinzipiell in den 80er Jahren des 20. Jhdt. erfolgte. (Allerdings gibt es dort wie auch in manchen seiner ehemaligen Kolonialländer noch immer Umstellungsschwierigkeiten!)

Nur hauptsächlich die USA verweigern bis heute den Beitritt zur Meterkonvention und halten am „Imperialen"(angloamerikanischen) Maßsystem fest, von dem hier einige Beispiele angeführt sind. Parallel zu diesen Beispielen gibt es viele weitere Maße, die für uns fast unüberschaubar sind.

Ein Blick in Wikipedia zeigt den Wirrwarr der verschiedenen möglichen Maße: (Die hier fett gedruckten Maßbezeichnungen sind heute üblich, die anderen sind bei den meisten Leuten unbekannt.

Die Tabellen wurden (abgeändert) Wikipedia entnommen

Angloamerikanische Längenmaße

Einheit	Deutsch	Abk.		Größe	metrische Größe	
inch	Zoll	in.	$?$		$2,54 \mathrm{~cm}$	$0,0254 \mathrm{~m}$
foot	$\underline{\text { Fuß }}$	ft.	'	12 inch	$30,48 \mathrm{~cm}$	$0,3048 \mathrm{~m}$
yard	Schritt	yd.		3 feet	$91,44 \mathrm{~cm}$	$0,9144 \mathrm{~m}$
mile	$\underline{\text { Meile }}$	mi., m.	1760 yard	$\sim 1,61 \mathrm{~km}$	$1.609,3440 \mathrm{~m}$	

Ein Vergleich:

Der Inhalt einer Bohrerkassette aus einem amerikanischen Baumarkt:

$3 / 64$ in., $1 / 16$ in., $5 / 64$ in., $3 / 32$ in., $7 / 64$ in., $1 / 8$ in., 9/64 in., $5 / 32$ in., $11 / 64$ in., $3 / 16$ in., 13/64 in., $7 / 32$ in., $15 / 64$ in., $1 / 4$ in., $5 / 16$ in., $3 / 8$ in. and $1 / 2$ in. drill bits

Aus: Geometrische Flachen und Körper zum "Be gereifen" © Manfred Pfennich (Manfred.Pfennichaaonat) A-8583 Edelschrott Viele weitere Modelle sind uf finden auf: www.mathematikmodelle.net

Metrische Bohrerkassette aus einem europäischen Baumarkt:

Die Unterschiede zur amerikanischen Bohrerkassette ergeben sich durch eine geringfügig andere handelsübliche Größe, aber auch durch das Auf- oder Abrunden

mm	1	1,5	2	2,5	3	3,5	4	4,5	5
$=$ inch	$3 / 64$	$1 / 16$	$5 / 64$	$3 / 32$	$1 / 8$	$9 / 64$	$5 / 32$	$11 / 64$	$13 / 64$

mm	6	6,5	7	7,5	8	8,5	9	9,5	10
inch	$15 / 64$	$1 / 4$	$9 / 32$	$19 / 64$	$5 / 16$	$21 / 64$	$23 / 64$	$3 / 8$	$25 / 64$

mm	11	11,5	12	12,5	13				
$=$ inch	$7 / 16$	$29 / 64$	$15 / 32$	$31 / 64$	$33 / 64$				

Allgemeine angloamerikanische Flächenmaße					
Einheit	Deutsch	Abk.		Größe	metrische Größe
square inch	$\underline{\text { Quadratzoll }}$	sq.in., in^{2}	in^{2}		$0,00064516 \mathrm{~m}^{2}$
square foot	$\underline{\text { Quadratfuß }}$	sq.ft., ft^{2}	ft^{2}	$144 \mathrm{in}^{2}$	$0,09290304 \mathrm{~m}^{2}$
square yard	$\underline{\text { Quadratyard }}$	$\mathrm{sq.yd.,}^{\text {(yd }}$ yd^{2}	yd^{2}	$9 \mathrm{ft}^{2}=$ $1.296 \mathrm{in}^{2}$	$0,83612736 \mathrm{~m}^{2}$
square mile	$\underline{\text { Quadratmeile }}$	sq.mi., mi^{2}	mi^{2}	3.097 .600 yd^{2}	$2.589 .988,11033600 \mathrm{~m}^{2}$

$1 \operatorname{acre}(=1 \mathrm{ac})=4046,85 \ldots \mathrm{~m}^{2}$
Der Acre ist das Hauptmaß für Grundstücksflächen. (Das entspricht einem quadratischen Feld mit einer Seitenlänge von 70 yard)
In der Regel werden nicht mehr als zwei Nachkommastellen angegeben, womit eine Genauigkeit von $\pm 20 \mathrm{~m}^{2}$ vorliegt. Sobald genauere Angaben erforderlich sind, beispielsweise bei Bauland, wird die Flächeneinheit Square Foot verwendet

Angloamerikanische Raummaße					
Einheit	Deutsch	Abk.	Größe	Kubikmeter	
cubic inch	$\underline{\text { Kubikzoll }}$	cu.in.	1 inch 3	$16,4 \mathrm{~cm}^{3}$	$0,000016387064 \mathrm{~m}^{3}$
cubic foot	Kubikfuß	cu.ft.	1 foot $^{3}=1728$ inch 3	$28,3 \mathrm{dm}^{3}$	$0,028316846592 \mathrm{~m}^{3}$
perch	Schachtrute		$1{\text { perch } \times 11 / 2 \text { feet }^{2}=}_{243 / 4 \text { feet }^{3}}$	$701 \mathrm{dm}^{3}$	$0,700841953200 \mathrm{~m}^{3}$
cubic yard		cu.yd.	1 yard $^{3}=27$ feet $^{3}=$ 46656 inch 3	$765 \mathrm{dm}^{3}$	$0,764554857984 \mathrm{~m}^{3}$
freight ton			40 feet 3	$1,13 \mathrm{~m}^{3}$	$1,132673863680 \mathrm{~m}^{3}$

load		50 feet 3	$1,42 \mathrm{~m}^{3}$	$1,415842329600 \mathrm{~m}^{3}$	
register ton	$\underline{\text { Registertonne }}$	RT	100 feet 3	$2,83 \mathrm{~m}^{3}$	$2,831684659200 \mathrm{~m}^{3}$
acre-inch			1 acre $\times 1$ inch $=3630$ feet 3	$103 \mathrm{~m}^{3}$	$102,790153129 \mathrm{~m}^{3}$
acre-foot		1 acre $\times 1$ foot $=43560$ feet 3	1,23 dam 3	$1.233,481837547$ $\mathrm{~m}^{3}$	

Angloamerikanische Gewichte

Einheit	Deutsch	Abk.	Größe		Gramm
grain	$\frac{\text { Gran }}{\text { Korn }}$	gr.		$64,8 \mathrm{mg}$	0,06479891 g
Handelsgewichte, Avoirdupois					
dram	Drachme	dr.	${ }^{1 / 16}$ ounce	$1,77 \mathrm{~g}$	$1,7718451953125 \mathrm{~g}$
ounce, ugs. lid	Unze	oz.	$1 / 16$ pound	2,83 dag	$28,349523125 \mathrm{~g}$
pound	Pfund	$\begin{aligned} & \mathrm{lb} ., \text { pd., } \\ & \#, \mathrm{lb}_{m} \end{aligned}$	$\begin{aligned} & 7000 \\ & \text { grain } \end{aligned}$	4,54 hg	453,59237 g

1 ton $=2000$ pounds

Angloamerikanische Kocheinheiten								
Einheit	Deutsch	Abk.	Größe (UK)	Größe (US)	Liter (UK)		Liter (US)	
saltspoon	Salzlöffel	ssp.	$1 / 4$ teaspoon		$1,11 \mathrm{ml}$	0,0011098 1	$1,23 \mathrm{ml}$	0,00123 .. 1
teaspoon	Teelöffel	tsp.	$1 / 4$ tablespoon 2 teaspoon $1 / 3$ tablespoon		$4,44 \mathrm{ml}$	0,004439 1	$4,93 \mathrm{ml}$	0,00492 .. 1
dessertspoon		dsp.			$8,88 \mathrm{ml}$	0,008 8791	9,86 ml	0,00985 ... 1
tablespoon	Esslöffel	tbsp.	$1 / 16$ cup		1,78 cl	0,017758 1	$1,48 \mathrm{cl}$	0,01478 ... 1
tea cup	Teetasse	tc.	1/3 pint	3/4 cup	1,89 dl	0,18942 1	$1,77 \mathrm{dl}$	0,17744... 1
cup	Tasse	c., cu.	$\begin{aligned} & 1 / 2 \text { pint }= \\ & 10 \text { ounce } \end{aligned}$	$1 / 2 \text { pint }=$ $8 \text { ounce }$	2,84 dl	0,284131	2,37 dl	0,23658 .. 1

Angloamerikanische Geschwindigkeitseinheiten					
Einheit	Deutsch	Abk.	Größe	$\mathbf{k m} / \mathbf{h}$	\mathbf{m} / \mathbf{s}
Knot	Knoten	$\mathrm{kn}, \mathrm{nm} / \mathrm{h}$	$1 \mathrm{sm} \div 1 \mathrm{~h}$	$1,852 \mathrm{~km} / \mathrm{h}$	$0,5144 \ldots \mathrm{~m} / \mathrm{s}$
Admiralty knot	Knoten (Admiralty)	kn, nm			
adm $/ \mathrm{h}$	1 sm				
adm $\div 1 \mathrm{~h}$	$1,853184 \mathrm{~km} / \mathrm{h}$	$0,5147 \ldots \mathrm{~m} / \mathrm{s}$			
Mile per hour	Meilen pro Stunde	$\mathrm{mph}, \mathrm{mi} / \mathrm{h}$	$1 \mathrm{mi} \div 1 \mathrm{~h}$	$1,609344 \mathrm{~km} / \mathrm{h}$	$0,4470 \ldots \mathrm{~m} / \mathrm{s}$
Footper second	Fuß pro Sekunde	$\mathrm{fps}, \mathrm{ft} / \mathrm{s}$	$1 \mathrm{ft} \div 1 \mathrm{~s}$	$1,097280 \mathrm{~km} / \mathrm{h}$	$0,3048 \ldots \mathrm{~m} / \mathrm{s}$

Mit der internationalen Seemeile sinkt ein Knoten lediglich um 1,184 m/h oder $329 \mu \mathrm{~m} / \mathrm{s}$.

Angloamerikanische Flüssigkeitsmaße, Imperial wet

Einheit	Deutsch	Abk.	Größe	Liter	
$\underline{\text { minim, drop }}$	Tropfen	min.	$1 / 20$ scruple	$59,2 \mu \mathrm{l}$	$0,00005919 \ldots 1$
$\underline{\text { fluid scruple }}$	Flüssigskrupel	fl.sc., $f ?$	$1 / 3$ drachm	$1,18 \mathrm{ml}$	$0,00118387 \ldots 1$
$\underline{\text { fluid dram }}$	Flüssigdrachme	fl.dr., $f ?$	$1 / 8$ ounce	$3,55 \mathrm{ml}$	$0,00355163 \ldots 1$
$\underline{\text { fluid ounce }}$	Flüssigunze	fl.oz., $f ?$	$1 / 5$ gill	$2,84 \mathrm{cl}$	0,0284131
glass	Glas		$1 / 2$ gill	$7,10 \mathrm{cl}$	$0,071033 \mathrm{l}$
gill, noggin	Viertelpint	gi.	$1 / 4$ pint	$1,42 \mathrm{dl}$	$0,142065 \mathrm{l}$
pint	Pint	fl.pt., pt.	$1 / 2$ quart	$5,68 \mathrm{dl}$	$0,568261(=$ britisch $)$
pint	Pint	fl.pt., pt.	$1 / 2$ quart	$4,73 \mathrm{dl}$	$0,473171(=\mathrm{US}$ amerikan $)$

Englische Flüssigkeitsmaße, Imperial wet

Einheit	Deutsch	Abk.	Größe	Liter	Liter
quart	Quart	qt.	$1 / 4$ gallon	1,141	1,136521
gallon	Gallone	gal.	277,42 inch 3	4,551	4,546091
(petrol) barrel	Fass	bl., bbl.	35 gallon	$1,59 \mathrm{hl}$	159,1131

Temperaturmaße:

Die Umrechnungen einer Temperatur von Fahrenheit in Celsius und zurück:
$t^{\circ} \mathrm{C}$ entsprechen $(9 / 5 \mathrm{t}+32)^{\circ} \mathrm{F}$. $\quad \mathrm{t}{ }^{\circ} \mathrm{F}$ entsprechen ${ }^{5} / 9(\mathrm{t}-32)^{\circ} \mathrm{C}$.
Überschlagrechnungen zum Umrechnen:
z.B.: $230{ }^{\circ} \mathrm{F}-32=198 \quad 198: 2=99^{\circ} \mathrm{C} \quad$ bzw
z.B.: $50^{\circ} \mathrm{C}$ x $2=100 \quad 100+32=132{ }^{\circ} \mathrm{F}$

Angloamerikanische nautische Maße

Einheit	Deutsch	Abk.	Größe	metrische Größe
$\underline{\text { fathom }}$	Faden (für Lotung), bzw. Klafter	fm., fth.	6 feet	$1,8288 \mathrm{~m}$
shackle (UK), shot (US)			15 fathom	$27,432 \mathrm{~m}$
cable (length)	Kabel(länge)	cbl.	100 fathom	$182,88 \mathrm{~m}$

nautical mile sea mile ab $1929 / 1954$	Seemeile	NM		1.852 m
nautical/sea league		n 1.	3 sea mile	$5.559,552 \mathrm{~m}$

Kuriose alte angloamerikanische Zeiteinheiten

Einheit	Deutsch	Abk.	Größe	Minuten $/$ Sekunden	
ounce	(Unze)		$1 / 12 \mathrm{moment}$		$7,5 \mathrm{~s}$
moment	(Moment)		$1 / 40 \mathrm{~h}$	$1,5 \mathrm{~min}$	90 s
bell	(Glocke)		$1 / 8 \mathrm{watch}$	30 min	1800 s
watch	(Wache)		4 h	240 min	14.400 s
sennight			1 Woche	7 Tage	604.800 s
fortnight			2 Wochen	14 Tage	1.209 .600 s

Methodisch - didaktische Vorbemerkungen zu A) Längenmaße:

Der wohl wichtigste Punkt, der hier für unsere SchülerInnen zu beachten ist: Messen, messen und wieder: messen! Abgesehen von den für Schüler üblichen Messgeräten Lineal und Dreieck gehören unbedingt verschieden lange Rollmaßbänder und ,Zoll"stäbe in die Klasse und damit gehören viele praktische Erfahrungen gesammelt aber auch entsprechend im Heft dokumentiert:
Für den Bereich der kleinen Längenmaße dienen zuerst einmal die Arbeitsblätter dieser Mappe. Das Gleiche gilt dann für die Maßverwandlungen.

Wir messen anschließend verschieden Dinge und Möbel in der Klasse. Wie lang und wie breit ist die Klasse? Wie hoch ist sie? Wie tief geht es vor unserem Klassenzimmerfenster hinunter? (Als Hilfsmittel eine Schnur verwenden!) Welche Abmessungen haben kleiner Räume in der Schule? Wie groß und wie hoch ist der Turnsaal?

Wie weit reicht 1 m waagrecht von meinen linken Fingerspitzen weg? Wie hoch sollte die Sitzfläche meines Sessels sein, damit ich gut sitze und wie hoch ist mein Schultisch? Können wir diese Möbel tauschen? (Ergonometrie!)

Zeigen Sie Ihren SchülerInnen, wie man durch Anvisieren mit einem gleichschenkelig rechtwinkeligen Dreieck (GZ - Dreieck) die Höhe z.B. eines Mastes oder eines Bauwerkes (Klassenzimmer) ,auf die Erde niederlegen" kann. Nur die eigene Augenhöhe ist noch zu addieren (und natürlich muss die eine Kathete wirklich waagrecht sein! Aber da gibt es ja Wasserwaagen sogar als Schlüsselanhänger!)
Wir klären den Umstand, dass es auch heute fast nicht mehr gebrauchte „alte" Längenmaße gibt: „dm" wird in der Praxis des Lebens fast nur mehr bei Volumensmessungen im Zusammenhang mit „ $\mathrm{dm}^{3}=\mathbf{l}($ Liter $)=$ kg Masse "verwendet. (Außer im Mathematikunterricht gibt es in der Praxis des Lebens auch kaum mehr „dm" ${ }^{2 "}$.)

Immer wieder vergessen unsere SchülerInnen, dass für die Umwandlung von m in km drei Stellen notwendig sind: 999 m sind noch kein km !
Die fehlende Zehnerstelle bei den Metern sind „dam" (1 „Dekameter" $=10 \mathrm{~m}$), die heute nur mehr in der Lagerstättenkunde (Bergbau) und in der Meteorologie (Dicke der Wolkenschicht) verwendet werden. (Wichtig für die Flächenmaße: Das Quadrat über dem Dekameter ist das Ar.)
Die fehlende Hunderterstelle bei den Metern sind „, $\underline{\underline{M c}(1, H e k t o m e t e r " ~}=100 \mathrm{~m}$), ein Begriff, der heute noch in der Flussschifffahrt verwendet wird. (Wichtig für die Flächenmaße: Das Quadrat über dem Hektometer ist das Hektar.) „dam" und „hm" werden aber auch heute noch z.B.in Frankreich verwendet! Ihre SchülerInnen werden stolz sein, Begriffe zu kennen, mit denen sie ihre Eltern ,,aufs Glatteis führen " können.

Messen Sie große Strecken mit den Schülern in den Gängen Ihrer Schule, auf dem Sportplatz oder in der Umgebung der Schule. Je nach Qualität der Fahrradtachometer zeigen diese Strecken in 10 m - Stufen an. Von wo bis wo müssen wir gehen, um 1 km zurückzulegen? Bei normaler Gehgeschwindigkeit brauchen wir für 4 km 1 Stunde.

Wir klären die Begriffe „Länge", „Breite", „Höhe" und „Tiefe" und wir klären auch ihre Tauschbarkeit
Man darf sich Flächen und Körper ruhig „zurechtdrehen", damit man sie berechnen kann. Ohne Probleme kann auch die Maßzahl der Breite einmal größer sein als jene der Länge. Welche Buchstaben (ob: 1 , b, h....... oder: $\mathrm{a}, \mathrm{b}, \mathrm{c} . .$.) zum Benennen als Variable eingesetzt werden ist absolut freigestellt!

Bei den Verwandlungsübungen sind die leeren Blätter als Kopiervorlagen gedacht, in die einfach handschriftlich eingetragen wird.

Erreichbare Kompetenzen

im Bereich der Längenmaße

- Sicheres Beherrschen der Längenmaße
- Den Sportgedanken durch Stoppen der Zeit in die Übungsreihen einbringen
- Gutes Schätzvermögen entwickeln
- Die Begriffe Länge, Breite, Tiefe, Höhe sicher beherrschen
- Sicherheit für den Begriff Umfang
- Sicherheit im Umgang mit Lineal, Dreieck, Rollmaß, „Zoll"stab....
- Die Maßeinheiten des praktischen Lebens benützen können
- Die für die Maßumwandlungen nötigen kaum mehr verwendeten Längenmaße gerade für das Verwandeln kennen und berücksichtigen

is Exa: Wir verwenden Wörter aus der lateinischen und altgriechischen Sprache
im Zusammenhang mit Maßen und müssen wissen, was sie bedeuten:

Anwendungsbeispiele

$1+1(o) a r), ~ h l$
r
Flussschifffahrt verwendet: $\underline{\mathbf{h m}=\text { Hektometer }}$
0
7
2
0
20
27
T

Der Streckenzug $\overline{\text { ABCDA }}$

Hier siehst du den geschlossenen Streckenzug $\overline{\text { ABCDA }}$ (Kurzs abweis den offenen Streckenzug EFGHI (Kurzschreibweise: EFGH Miss die Länge der einzelnen Teilstrecken und berechne die
(Der Strich über AB heißt: "Die Länge der Strecke von A nach B fach "die Strecke von A nach B")

$\overline{\mathbf{A B}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$
$\overline{\mathbf{B C}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$
$\overline{\mathbf{C D}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$
$\overline{\mathbf{D A}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$

Der Streckenzug $\overline{\text { ABCDA }}$

Hier siehst du den geschlossenen Streckenzug $\overline{\mathrm{ABCDA}}$ (Kurzs Abweis) den offenen Streckenzug EFGHI (Kurzschreibweise: EFGH Miss die Länge der einzelnen Teilstrecken und berechne die
(Der Strich über AB heißt: "Die Länge der Strecke von A nach B
fach "die Strecke von A nach B")

$\overline{\mathbf{A B}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$
$\overline{\mathbf{B C}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$
$\overline{\mathbf{C D}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$
$\overline{\mathbf{D A}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$
$\overline{\mathbf{A B C D A}}=$	$\mathbf{m m}=$	$\mathbf{c m}=$

Weitere Streckenzüge (1)

Verwandle $\overline{\mathrm{ABCDEF}}$ in $\overline{\mathrm{ABCDEFA}}$. Miss alle Teilstrecken, trag ein. Wie groß ist die Gesamtlänge? Verwandle alle Maße in dr (Regel: "Komma unter Komma, das wusste schon die Oma")

Weitere Streckenzüge (1)

Verwandle $\overline{\mathrm{ABCDEF}}$ in ABCDEFA. Miss alle Teilstrecken, trag. ein. Wie groß ist die Gesamtlänge? Verwandle alle Maße in dr
(Regel: "Komma unter Komma, das wusste schon die Oma")
Die sinngemäß gleichen Arbeitsaufträge gelten auch für d citeren Stro

Weitere Streckenzüge (2)

Verwandle $\overline{\text { ABCDEF }}$ in $\overline{\text { ABCDEFA }}$. Miss alle Teilstrecken, trag ein. Wie groß ist die Gesamtlänge? Verwandle alle Maße in dy

Weitere Streckenzüge (2)

Verwandle $\overline{\text { ABCDEF }}$ in ABCDEFA. Miss alle Teilstrecken, trag. ein. Wie groß ist die Gesamtlänge? Verwandle alle Maße in dr
(Regel: "Komma unter Komma, das wusste schon die Oma")

Weitere Streckenzüge (3)

Hier ist der Streckenzug ABCDEFA. Miss alle Teilstrecken, trag ein. Wie groß ist die Gesamtlänge? Verwandle alle Maße in dy (Regel: "Komma unter Komma, das wusste schon die Oma")

Weitere Streckenzüge (3)

Hier ist der Streckenzug ABCDEFA. Miss alle Teilstrecken, trag ein. Wie groß ist die Gesamtlänge? Verwandle alle Maße in dy
(Regel: "Komma unter Komma, das wusste schon die Oma")

Weitere Streckenzüge (4)

Hier ist ABCDEFA. Miss alle Teilstrecken, trage ihre Längen iv Tabel ist die Gesamtlänge? Verwandle alle Maße in dm und addiere
(Regel: "Komma unter Komma, das wusste schon die Oma")

Weitere Streckenzüge (4)

Hier ist ABCDEFA. Miss alle Teilstrecken, trage ihre Längen iv Tabel ist die Gesamtlänge? Verwandle alle Maße in dm und addiere
(Regel: "Komma unter Komma, das wusste schon die Oma")

Weitere Streckenzüge (5)
Hier ist $\overline{\mathrm{ABCDEFA}}$. Miss alle Teilstrecken, trage ihre Längen in
Tabell ist die Gesamtlänge? Verwandle alle Maße in dm und addiere
(Regel: "Komma unter Komma, das wusste schon die Oma")

A 2.1.5

Weitere Streckenzüge (5)
Hier ist ABCDEFA. Miss alle Teilstrecken, trage ihre Längen in
Tabell ist die Gesamtlänge? Verwandle alle Maße in dm und addiere
(Regel: "Komma unter Komma, das wusste schon die Oma")

A 2.1.6
 Weitere Streckenzüge (6)

Hier hast du weitere Streckenzüge. Benenne sie selbst. Miss alle gen in eine Tabelle ein. Wie groß ist jeweils die Gesamtlänge? und addiere! (Regel: "Komma unter Komma, das wusste schon at

A 2.1.6
 Weitere Streckenzüge (6)

Hier hast du weitere Streckenzüge. Benenne sie selbst. Miss alle

Weitere Streckenzüge (7)

Hier hast du weitere Streckenzüge. Benenne sie selbst. Miss alle gen in eine Tabelle ein. Wie groß ist jeweils die Gesamtlänge? und addiere! (Regel: "Komma unter Komma, das wusste schon at

Weitere Streckenzüge (7

Hier hast du weitere Streckenzüge. Benenne sie selbst. Miss alle gen in eine Tabelle ein. Wie groß ist jeweils die Gesamtlänge? und addiere! (Regel: "Komma unter Komma, das wusste schon au

$$
\stackrel{6}{6}
$$

$$
\stackrel{8}{\sqrt[2]{3}}
$$

$$
\stackrel{2}{\sqrt[2]{3}}
$$

$$
\stackrel{8}{\sqrt[2]{3}}
$$

Methodisch - didaktische Vorbemerkungen zu
 B) Flächenmaße:

Gleich wie bei den Längenmaßen ist auch hier der wohl wichtigste Punkt, der hier zu beachten ist: Messen, messen und wieder: messen! Abgesehen von den für Schüler üblichen Messgeräten Lineal und Dreieck gehören unbedingt verschieden lange Rollmaßbänder und „Zoll"stäbe in die Klasse und mit diesen gehören viele praktische Erfahrungen gesammelt, aber auch entsprechend im Heft oder auf Planskizzen dokumentiert:

Wir messen verschieden Dinge und Möbel in der Klasse, bei denen die Fläche bedeutungsvoll ist: Die m^{2} Keramikfliesen beim Waschbecken, die Fläche der Schiebegläser am Kasten in der Klasse, die Bodenfläche, die Gesamtfläche der Fenster in der Klasse...... Wichtig sind hier auch die Querverbindungen zur Lebenswirklichkeit: Fliesen gibt es nur in ganzen Packungen....Man bezahlt oft für den Weg und die Arbeit viel mehr als für das Material....Sofort den Unterschied zwischen Fläche und Umfang herausarbeiten!

Wir kleben mit einem wieder leicht ablösbaren Papierklebeband von der hinteren Klassenecke weg entlang der Hinterwand einen Quadratmeter neben den anderen auf den Boden. Wir brauchen dazu aber den rechten Winkel eines Schultafeldreieckes. Wir müssen nicht alle m^{2} der Klasse aufkleben. Wie können wir sie ausrechnen? Wieviel m^{2} Bodenfläche stehen jedem Schüler zur Verfügung? Wieviel m^{2} pro Peron haben wir zu Hause? Wie steht es damit in armen Ländern bzw. Slums? (Soziales Lernen!)

Wir klären den Umstand, dass es auch heute fast nicht mehr gebrauchte „alte" Flächenmaße gibt: Außer im Mathematikunterricht gibt es in der Praxis des Lebens kaum mehr „dm ${ }^{2 "}$. Das Längenmaß „ ${ }^{\mathrm{dm}}$ " wird fast nur mehr bei Volumsmessungen und Masseberechnungen im Zusammenhang mit , $\mathrm{dm}^{3}=1$ (Liter) $=\mathrm{kg}$ Masse "verwendet. Auch mm^{2} und cm^{2} haben außer im modellhaften Rechnen des Mathematikunterrichts praktisch kaum eine Bedeutung. Andere alte Flächenmaße, die vor allem in der Landwirtschaft Verwendung fanden: „Joch" und „Morgen". Suche diese Begriffe im Internet! Andere alte Maße?

Bei den Längenmaßen haben wir die fehlende Zehnerstelle der Meter „dam" (,„Deka-meter") (= 10 m) kennengelernt, die heute nur mehr in der Lagerstättenkunde (Bergbau) und in der Meteorologie (Dicke der Wolkenschicht) verwendet werden.
Ein Quadrat mit der Seitenlänge von 1 dam ($=10 \mathrm{~m}$) (,,1 dam im Quadrat" oder: , 10 m im Quadrat") ist 1 Ar). Ein Ar kann man leicht in der Pausenhalle und sogar mehrere am Schulhof oder gar am Sportplatz ausmarkieren. Damit schaffen wir Bezug zur Realität.

Die fehlende Hunderterstelle der Meter sind „hm" (=100m) („Hektometer"), ein Begriff, der heute noch in der Flussschifffahrt verwendet wird.
Ein Quadrat mit der Seitenlänge von $1 \mathrm{hm}(=100 \mathrm{~m})(,, 1 \mathrm{hm}$ im Quadrat" oder: , 100 m im Quadrat" ist 1 Hektar.
Wer kennt ein Feld in der Nähe, das so groß ist? Schauen wir am Stadtplan nach wo wir so eine Fläche (auf Transparentpapier im Maßstab richtig gezeichnet) finden!

Auch hier werden Ihre SchülerInnen wieder stolz sein, Begriffe zu kennen, mit denen sie ihre Eltern aufs „Glatteis führen" können und mit deren Hilfe sie die Maßreihe der Flächenmaße leichter verstehen.

Wie viel km^{2} beträgt die Fläche unserer Gemeinde? Suchen wir doch auch hier mit dem Transparentpapier eine Fläche dieser Größe auf einer Landkarte (Wanderkarte, Stadtplan...) unseres Gebietes!

Erreichbare Kompetenzen im Bereich der Flächenmaße

- Sicheres Beherrschen der Flächenmaße
- Den Sportgedanken durch Stoppen der Zeit in die Übungsreihen einbringen
- Gutes Schätzvermögen für kleine, mittlere und größere Flächen entwickeln (durch Vergleichen mit bekannten Flächen z.B. Pausenhalle, Fußballfeld....)
- Sicherheit im Unterschied von Umfang und Fläche
- Sicherheit im Umgang mit Lineal, Dreieck, Rollmaß, ,Zoll"‘stab....und damit Flächen berechnen können
- Die Flächen-Maßeinheiten des praktischen Lebens benützen können
- Die für die Maßumwandlungen nötigen kaum mehr verwendeten Längenmaße gerade für das Verwandeln kennen und berücksichtigen bzw. „dam" und „hm" als Bezugsgröße für Ar und Hektar sicher kennen
- Sich die Flächenmaße gut vorstellen können
- Zuordnungstabelle von Kantenlänge und Flächeninhalt

Vom 1 cm - Quadrat bis zum 10 cm

Vom 1 cm - Quadrat bis zum 10 cm रe. rat

B 1.1.2
 Teile vom Quadratdezimet

Wieviel dm^{2} sind $1 \mathrm{~m}^{\mathbf{2}}$?

Wig iole $\mathrm{dm}^{2} \mathrm{mu}$ vir Î̀ er Reihe zusammenmontieren, bis wir in einem Quadrat mit Reihe gefüllt haben?
sen dann sein, dass wir ein Quadrat mit jeweils 1m Seitenlänge
zusàs.

Wieviel dm^{2} sind $1 \mathrm{~m}^{2}$?

Wig ale dm ${ }^{2}$ mu vir itı er Reihe zusammenmontieren, bis wir in einem Quadrat mit Reihe gefüllt haben?
sen dann sein, dass wir ein Quadrat mit jeweils 1m Seitenlänge

$$
1 \mathrm{~cm}^{2}=\frac{1}{10000} \mathrm{~m}^{2}=0,0001 \mathrm{~m}^{2} \quad 1 \mathrm{~mm}^{2}=?
$$

Bestimme die Flächeninhalt
 und berechne auch die Umfänge der verschieden áchen

Bestimme die Flächeninhalty

und berechne auch die Umfänge der verschieden áchen

$1 \mathrm{dm}^{2}=\frac{1}{100} \mathrm{~m}^{2}=0,01 \mathrm{~m}^{2}$
$1 \mathrm{~cm}^{2}=0,01 \mathrm{dm}^{2}=0,0001 \mathrm{~m}^{2}$
$1 \mathrm{~mm}^{2}=0,01 \mathrm{~cm}^{2}=0,0001 \mathrm{dm}^{2}=0,000001 \mathrm{~m}^{2}$
Zum Abschluss als Zùnzarbeit bzw. Wiederholung: Wie groß ist der Umfang der verschiedenen Flächen?

Bestimme die Flächeninhalte

 (Auch reines Abzählen ist erlaubt! Es muss nicht immer all echnet

$$
1 \mathrm{dm}^{2}=\frac{1}{100} \mathrm{~m}^{2}=0,01 \mathrm{~m}^{2}
$$

$1 \mathrm{~cm}^{2}=0,01 \mathrm{dm}^{2}=0,0001 \mathrm{~m}^{2}$
$1 \mathrm{~mm}^{2}=0,01 \mathrm{~cm}^{2}=0,0001 \mathrm{dm}^{2}=0,000001 \mathrm{~m}^{2}$

Zum Abschluss als Zùsuzarbeit bzw. Wiederholung: Wie groß ist der Umfang der verschiedenen Flächen?

Bestimme die Flächeninhalte

und berechne auch die Umfänge der verschieden achen (Auch reines Abzählen ist erlaubt! Es muss nicht immer al erechng

Zum Abschluss als Zusuzarbeit bzw. Wiederholung: Wie groß ist der Umfang der verschiedenen Flächen?
Aus: Geometrische Flachen und Körper zum "Be -greifen" O Manfred Pfennich (Manfred.Pfennichaaana.at) A-8583 Edelschrott

Bestimme die Flächeninhalte

und berechne auch die Umfänge der verschieden achen (Auch reines Abzählen ist erlaubt! Es muss nicht immer al erechng

Zum Abschluss als Zùsuzarbeit bzw. Wiederholung: Wie groß ist der Umfang der verschiedenen Flächen?

Bestimme die Flächeninhalty

und berechne auch die Umfänge der verschieden áchen (Auch reines Abzählen ist erlaubt! Es muss nicht immer a) erechn

Bestimme die Flächeninhalt

und berechne auch die Umfänge der verschieden áchen

Bestimme die Flächeninhalty

 (Auch reines Abzählen ist erlaubt! Es muss nicht immer ay erechn

Bestimme die Flächeninhaltg

 (Auch reines Abzählen ist erlaubt! Es muss nicht immer ay erechn

Bestimme die Flächeninhalte

Bestimme die Flächeninhalte

$1 \mathrm{dm}^{2}=\frac{1}{100} \mathrm{~m}^{2}=\mathbf{0}, 01 \mathrm{~m}^{2}$
$1 \mathrm{~cm}^{2}=0,01 \mathrm{dm}^{2}=0,0001 \mathrm{~m}^{2}$
$1 \mathrm{~mm}^{2}=0,01 \mathrm{~cm}^{2}=0,0001 \mathrm{dm}^{2}=0,000001 \mathrm{~m}^{2}$
B 2.1.
B 2.1.1 Name:
Zuerst die Lösung 1 ausfüllen, dann diese Spalte nach hinten knicken, die Lösung 2 noch einmal ausfüllen und die Ergebnisse vergleichen. Ubung schafft Sicherheit und bringt dir Tempo!

(1)
Name:
 Name:
Zuerst die Lösung 1 ausfüllen, dann diese Spalte nach hinten

vergle ichen. Übung schafft Sicherheit und bringt dir Tempo!	
Lösung 2	Lösung 1

Losung

Trage bitte rechts unter Lösung 1 bzw. 2 für deine Eigenkontrolle die benötigte Zeit ein:
Kleine

Zuerst die Lösung 1 ausfüllen, dann diese Spalte nach hinten knicken, die Lösung 2 noch einmal ausfüllen und die Ergebnisse vergleichen. Öbung schafft Sicherheit und bringt dir Tempo!

| Lösung 2 | Lösung 1 |
| :--- | :--- | :--- | Name:

Trage bitte rechts unter Lösung 1 bzw. 2 für deine Eigenkontrolle die benötigte Zeit ein:
Name:

Name: Lösungen

Arbeitsblatt: Die kleinen Flächenmaße: $\mathrm{mm}^{2}-\mathrm{cm}^{2} \mathrm{~m}^{2}-$

Trage zur Eigenkontrollurechts die benötigten Zeiten ein:
Aus: Geometrische Flächen und Körper zum "Be-greifen" © ManfredPfennich (Manfred.Pfennich@aon.at) A-8583Edelschrott

Arbeitsblatt: Die kleinen Flächenmaße: $\mathbf{m m}^{\mathbf{2}}-\mathbf{c m}^{\mathbf{2}}-\mathbf{d m}^{\mathbf{2}}-\mathbf{m}^{\mathbf{2}}$

Name: Lösungen

Arbeitsblatt: Die kleinen Flächenmaße: $\mathbf{m m}^{2}-\mathbf{c m}^{2}-\mathbf{d m}^{2}-\mathbf{m}^{2}$

Zuerst die Lösung 1 ausfillen, dann diese Spatte nach hinten knicken, die Lösung 2 ausfillen und vergetig							
	Angaben	verwandeln in		Lösung 2			
		mehrn. $=$ mehrnamig					
1.)	$38,66 \mathrm{~m}^{2}=$	$38 \mathrm{~m}^{2} 66 \mathrm{dm}^{2}$					
2.)	$7,06 \mathrm{~cm}^{2}=$	$706 \mathrm{~mm}^{2}$		\cdots			
3.)	$0,52 \mathrm{dm}^{2}=$	$52 \mathrm{~cm}^{2}$		\square			
4.)	$8,12, \mathrm{dm}^{2}=$	$812 \mathrm{~cm}^{2}$		\square			
5.)	$4,3 \mathrm{dm}^{2}=$	$430 \mathrm{~cm}^{2}$					
6.)	$96 \mathrm{~cm}^{2}=$	0,96 dm ${ }^{2}$					
7.)	$8 \mathrm{~cm}^{2}=$	0,08 dn					
8.)	$63,4 \mathrm{dm}^{2}=$	6340					
9.)	$5,034 \mathrm{~m}^{2}=$	$5 \mathrm{~m}^{2} 3 \mathrm{dm}^{2}$					
10.)	$4,32 \mathrm{~m}^{2}=$	dm^{2}					
11.)	$7 \mathrm{~m}^{2} \mathrm{~d} 5 \mathrm{dm}^{2}=$	7,05 m^{2}					
12.)	$54 \mathrm{~cm}^{2}=$, $4 \mathrm{dm}^{2}$					
13.)	$821 \mathrm{~cm}^{2}=$	8,21					
14.)	$40,3 \mathrm{~cm}^{2}=$	m^{2}					
15.)	$8 \mathrm{~m}^{2} 43 \mathrm{dm}^{2}=$	0,43 m²					
16.)	$3225 \mathrm{~cm}^{2}$	$32,24$					
17.)	$7,25 \mathrm{~m}^{2}=$	$725 \mathrm{dm}^{2}$					
18.)	$8,6 \mathrm{~m}^{2}=$	$\cdots 9 \mathrm{dm}^{2}$					
19.)		$4 \mathrm{dm}^{2}=\quad 4 \mathrm{~m}^{2}$					
20.)	0,3	$\square \mathrm{dm}^{2}$					
21.)	$45 \mathrm{~m}^{2}$	$=500 \mathrm{~cm}^{2}$					
22.)		[$60000 \mathrm{~cm}^{2}$					
23.)	$\times \mathrm{ml}$	$5 \mathrm{~m}^{2} 2 \mathrm{dm}^{2} 45 \mathrm{~cm}^{2}$					
	$6,0 \lambda$	$\mathrm{m}^{2} 7 \mathrm{dm}^{2} 30 \mathrm{~cm}^{2}$					
		$32 \mathrm{dm}^{2} 50 \mathrm{~cm}^{2}$					
	$4,4 \mathrm{din}$	0,044 m^{2}					
27.)	$\mathrm{S}+\mathrm{I}_{2}=$	5,05 m^{2}					

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:

Name: Lösungen

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Name:

Arbeitsblatt:Die kleinen Flächemaße: mm $^{\mathbf{2}}$ - $\mathbf{c m}^{\mathbf{2}}$

Name: Lösungen

Arbeitsblatt:Die kleinen Flächemaße: $\mathbf{m m}^{2}-\mathbf{c m}^{2}$

				fring mac
	Angaben	verwandeln in	Lösung	
		mehrn. $=$ mehrramig		
1.)	$57,46 \mathrm{~m}^{2}=$	$57 \mathrm{~m}^{2} 46 \mathrm{dm}^{2}$		
2.)	$8,005 \mathrm{~m}^{2}=$	800,5(0) dm ${ }^{2}$		
3.)	$0,67 \mathrm{~m}^{2}=$	$67 \mathrm{dm}^{2}$	\square	
4.)	$6,84 \mathrm{dm}^{2}=$	$6 \mathrm{dm}^{2} 84 \mathrm{~cm}^{2}$		
5.)	$8,076 \mathrm{dm}^{2}=$	$8 \mathrm{dm}^{2} 7 \mathrm{~cm}^{2} 60 \mathrm{~cm}^{2}$		
6.)	$216 \mathrm{~cm}^{2}=$	$0,0216 \mathrm{~m}^{2}$		
7.)	$8 \mathrm{~cm}^{2} 7 \mathrm{~mm}^{2}=$	$8,07 \mathrm{~cm}^{2}$		
8.)	$4 \mathrm{~cm}^{2} 8 \mathrm{~mm}^{2}=$	0,0408 dr		
9.)	$46 \mathrm{~mm}^{2}=$	0,46		
10.)	$0,8 \mathrm{~m}^{2}=$	$8 \mathrm{n}^{2}$		
11.)	$48917 \mathrm{~cm}^{2}=$	$4,89 \mathrm{M} / \mathrm{m}^{2}$		
12.)	$9,4 \mathrm{dm}^{2}=$	$9 \mathrm{dm}^{2} 10 \mathrm{~cm}^{2}$		
13.)	$6 \mathrm{~m}^{2} 2 \mathrm{dm}^{2}=$	dm^{2}		
14.)	$4890 \mathrm{~cm}^{2}=$	0,489		
15.)	$43,6 \mathrm{~cm}^{2}=$	0,4		
16.)	$903 \mathrm{dm}^{2}=$	$5 \mathrm{~m}^{2}$		
17.)	$4,6 \mathrm{~m}^{2}$	460 d		
18.)	$8 \mathrm{~m}^{2} 2 \mathrm{dm}$	8,02		
19.)	$17 \mathrm{~m}^{2} 29 \mathrm{dm}^{2}=$, $29 \mathrm{~m}^{2}$		
20.)	$7,056 \mathrm{~m}^{2}=$	$7 \mathrm{~m}^{2} 5 \mathrm{~cm}$		
21.)	$62 \quad 2$	$63 . \mathrm{m}^{2}$		
22.)	6,9	$0,0 \quad \mathrm{dm}^{2}$		
23.)	$2 \mathrm{~cm}^{2}$	mm^{2}		
24.)		$870 \mathrm{~cm}^{2}$		
25.)	5N	$\mathrm{m}^{2} 65 \mathrm{dm}^{2} 10 \mathrm{~cm}^{2}$		
26.)	\wedge	- $390 \mathrm{~mm}^{2}$		
	27.	$4,07 \mathrm{~cm}^{2}$		
		0,154 m²		
29.)	$9 \mathrm{dm}^{-}$	8,09 m²		
30.)	$3 \mathrm{dr}-\mathrm{q}^{2}=$	$3,08 \mathrm{dm}^{2}$		

B 3.1.

Zuerst die Lösung 1 ausfüllen, dann diese Spalte nach hinten knicken, die Lösung 2 noch einmal ausfüllen und vergleichen.	Übung schafft sicherheit und bringt Tempol
LöSung 1	

Trag bitte rechts unter Lösung 1 bzw. 2 für deine Eigenkontrolle die be nötigte Zeit ein:

Name: Lösungen
Zuerst die Lösung 1 ausfüllen, dann diese Spalte nach hinten

Name:

Arbeitsblatt: Die Flächenmaße: $\left(\mathrm{mm}^{2}-\mathrm{cm}^{2}-\mathrm{dm}^{2}-\mathrm{m}^{2}\right.$ a-km

	Angaben		verwandeln in mehrn. $=$ mehrnamig		
1					

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Arbeitsblatt: Die Flächenmaße: ($\mathrm{mm}^{2}-\mathrm{cm}^{2}-\mathrm{dm}^{2}-\mathrm{m}^{2}-\mathrm{a}-\mathrm{ha} \mathrm{km}{ }^{2}$)

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:

Name: Lösungen

Arbeitsblatt: Die großen Flächenmaße

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:

Trag bitte rechts unter Lösung 1 bzw. 2 für deinen eigenen Leistungsvergleich die benötigte Zeit ein:

[^2]Name: Lösungen
B 4.1.1

Trag bitte rechts unter Lösung 1 bzw. 2 für deinen eigenen Leistungsvergleich die benötigte Zeit ein:
AAus: Geometrische Flächen und Körper zum "Be - greifen"© Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Name:

Arbeitsblatt: Alle Flächenmaße

Trage zur Eigenkontrolle rechts die benötigten Zeiten ein:
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Name:
Arbeitsblatt: Alle Flächenmaße

Zuerst die Lösung 1 ausfillen, dann diese Spalte nach hinten knicken, die Lösung 2 ausfillen und vergle					raining m	h schneller!	
	Angaben		verwandeln in	Lösung 2			
			mehrn. $=$ mehrnamig				
1.)	38,56 m²	$=$	mehrn.				
2.)	$9,04 \mathrm{~cm}^{2}$	$=$	mm^{2}	-			
3.)	0,25 dm ${ }^{2}$	$=$	cm^{2}				
4.)	$1,8 \mathrm{dm}^{2}$	$=$	cm^{2}	\square	-		
5.)	$6 \mathrm{~cm}^{2}$	$=$	dm^{2}	\square	-		
6.)	$96 \mathrm{~cm}^{2}$	$=$	dm^{2}	,			
7.)	$34,6 \mathrm{dm}^{2}$	$=$	cm^{2}				
8.)	$3,045 \mathrm{~m}^{2}$	$=$	mehrn.		-		
9.)	$9 \mathrm{~m}^{2} 33 \mathrm{dm}^{2}$	$=$					
10.)	$7 \mathrm{~m}^{2} 8 \mathrm{dm}^{2}$	$=$					
11.)	$54 \mathrm{~m}^{2}$	$=$	a				
12.)	$218 \mathrm{~m}^{2}$	$=$	a				
13.)	$40,3 \mathrm{~cm}^{2}$	$=$	dm				
14.)	$4980 \mathrm{~m}^{2}$	$=$	\mathfrak{p}	-			
15.)	$6 \mathrm{a} 84 \mathrm{~m}^{2}$	$=$	m^{2}				
16.)	7,2 ha						
17.)	6,8 ha		m^{2}				
18.)	28645	$=$	'a				
19.)	$0,8$						
20.)	$94 \mathrm{~mm}$						
21.)	6 ha		km^{2}				
22.)			mehrn.				
23.)			mehrn.				
2	O,		$\cdots \quad \mathrm{m}^{2}$				
			m^{2}				
25	$9.6 \mathrm{kmı}$		mehrn.				
26.)			mehrn.				

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Name: Lösungen
Arbeitsblatt: Alle Flächenmaße

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Name: Lösungen

Arbeitsblatt: Alle Flächenmaße

Zuerst die Lösung 1 ausfüllen, dann diese Spalte nach hinten knicken, die Lösung2 ausfüllen und vergle							
	Angaben		verwandeln in	Lösung 2			
			mehrn. $=$ mehrnamig				
1.)	$46,7 \mathrm{~m}^{2}$	$=$	$46 \mathrm{~m}^{2} 70 \mathrm{dm}^{2}$				
2.)	9,683 a	$=$	968,3 m^{2}	-			
3.)	$0,28 \mathrm{~m}^{2}$	$=$	$28 \mathrm{dm}^{2}$				
4.)	$8,46 \mathrm{dm}^{2}$	$=$	$8 \mathrm{dm}^{2} 46 \mathrm{~cm}^{2}$	\square			
5.)	$7,08 \mathrm{dm}^{2}$	$=$	$7 \mathrm{dm}^{2} 8 \mathrm{~cm}^{2}$				
6.)	$612 \mathrm{~m}^{2}$	$=$	0,0612 ha				
7.)	$9 \mathrm{~cm}^{2} 8 \mathrm{~mm}^{2}$	$=$	$9,08 \mathrm{cr}$				
8.)	$7 \mathrm{~cm}^{2} 4 \mathrm{~mm}^{2}$	$=$	0,0704				
9.)	$64 \mathrm{~mm}^{2}$	$=$	0				
10.)	0,8 ha	$=$	80 a				
11.)	$28456 \mathrm{~m}^{2}$	$=$	2,8456 ha				
12.)	7,4 ha	$=$,000 m				
13.)	6 ha $2 \mathrm{~m}^{2}$	$=$	600°				
14.)	$9840 \mathrm{~m}^{2}$	$=$					
15.)	$30,4 \mathrm{~cm}^{2}$,04 dm²				
16.)	$708 \mathrm{~m}^{2}$						
17.)	$5,4 \mathrm{~m}^{2}$		0,054 a				
18.)	$9 \mathrm{~m}^{2} 8 \mathrm{dm}^{2}$		$08 \mathrm{~m}^{2}$				
19.)	$6 \mathrm{~m}^{2} 32 \mathrm{~d}$		$2 \mathrm{~m}^{2}$				
20.)	$5,075 \mathrm{~m}^{2}$		$\mathrm{m}^{2} 7 \mathrm{~g}^{\prime} \quad 0 \mathrm{~cm}^{2}$				
21.)	$46,3$		$430 \mathrm{~cm}^{2}$				
22.)	9,6		0,096 dm ${ }^{2}$				
23.)	$6 \mathrm{~cm}^{2}$		$600 \mathrm{~mm}^{2}$				
	$\bigcirc \mathrm{dm}^{2}$		$480 \mathrm{~cm}^{2}$				
	+00		$52 \mathrm{dm}^{2} 60 \mathrm{~cm}^{2}$				
26.)			$3 \mathrm{~m}^{2} 20 \mathrm{dm}^{2}$				
27.)	$90 \mathrm{dm}^{-}$		$0,9 \mathrm{~m}^{2}$				

Trage rechts zur Eige, ontrolle die benötigten Zeiten ein:

Methodisch - didaktische Vorbemerkungen zu

C) Vierecke und Dreiecke

Die Arbeitsblätter dieses Bereiches sind einerseits als Fortsetzung des Bereiches der Längenmaße und Flächenmaße zu sehen, andererseits geht es hier vor allem um die Berechenbarkeit von Umfang und Fläche dieser Figuren:

Jede Figur wird zuerst einmal sorgfältig ausgeschnitten und sorgfältig und klein mit dem eigenen Namen versehen. Anschließend wird das Viereck bzw. Dreieck gleich groß wie das Original (zum Übertragen helfen ruhig Bleistiftpunkte knapp am aufgelegten Original!) in das Heft gezeichnet und die Seiten werden mit frei gewählten Variablen beschriftet. Auch die Höhen sollten eingezeichnet und beschriftet werden.

Welcher Weg bietet sich an, um den Umfang zu berechnen?
Geben Sie bitte keine Formeln vor! Die SchülerInnen finden selbst ihren Weg dahin, wir Lehrer unterschätzen unsere SchülerInnen viel zu sehr!

Welche Möglichkeiten gibt es, die verschiedenen Vierecke und Dreiecke durch das Abschneiden und Umlagern von Flächenteilen in Rechtecke zu verwandeln?
Jetzt wird die ausgeschnittene Fläche wirklich mit der Schere bearbeitet und die abgeschnittenen Flächenteile werden entsprechend umgeordnet, dass ein flächengleiches Rechteck entsteht. Dieses wird zur selbst gezeichneten Kopie der Originalfläche dazugeklebt und entsprechend mit Variablen beschriftet.
Auch hier sollten Sie keine Formeln vorgeben, denn auch hier finden die SchülerInnen selbst den Weg zur Formel als Vereinfachung der Rechenarbeit für eine Reihe ähnlicher Fälle.

Gerade die Methode des Abschneidens und Umlagerns von Teilen kann in der Geometrie immer wieder verwendet werden. Das gilt für die Berechnung von Körperoberflächen ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den SchülerInnen analoge Vorgangsweisen bewusst zu machen.

Begründe diè gegebene Formel aus den Zeichnungen und beweise sie

Begründe die

gegebene Formel aus den Zeichnungen und beweise sie Quadrates und das Vergleichen mit dem Rest des umge-

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Das Verhältnis zwischen Quadratseite u

Mo.
 his mit der gleichen Zahl und runde das Ergebnis auf eine ganze Zalir anst duruhig tun, da du ja nicht auf sehr viele Dezimalstellen gerechnet hast und ja。 Was fällt beim dis auf und kannst du es vielleicht begründen?
his mit der gleichen Zahl und runde das Ergebnis auf eine ganze Zalir -nnst duruhig tun, da du ja nicht auf sehr viele Dezimalstellen gerechnet hast und ja ssungenauigkeiten vorliegen!
Was fällt beim dis auf und kannst du es vielleicht begründen?

Die Höhenlinie einzeichnen, das Dreieck

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Das Deltoid (das Drachenviereg

Beim Deltoid sind immer 2 benachbarte Seiten gleich lang. Die läng genannt, die kürzere " \mathbf{f} ", und sie stehen zueinander im rechten Y halbiert die kürzere. Zum Beschriften suche immer zuerst die läng nannt hast, benennst du jenen Eckpunkt dieser Diagonale, der näher zun, liegt mit A. In diesem Eckpunkt treffen sich auch die Seiten Die Eckpo weitere Möglichkeit für die Flächenberechnung gibt

Wenn du die Schneidebeweise für die Flächenber ung duı
\qquad Drehung gegen den Uhrzeiger.
das umgeschriebene Rechteck (beschriften!), d?
Es ensteht immer ein Rechteck, das entweder so hoch oder halb so so hoch oder halb so wie das Deltoid ist.

Das Deltoid (das Drachenviered

Beim Deltoid sind immer 2 benachbarte Seiten gleich lang. Die läng genannt, die kürzere "f", und sie stehen zueinander im rechten y halbiert die kürzere. Zum Beschriften suche immer zuerst die läng nannt hast, benennst du jenen Eckpunkt dieser Diagonale, der näher Zu , liegt mit A. In diesem Eckpunkt treffen sich auch die Seiten \quad Die Eckp Drehung gegen den Uhrzeiger.

Auch dem Drachenviereck kann ein Rechteck mit den ben werden. Welche Möglichkeit für die Flächenberec g des D ds gibt d ieder? Welche weitere Möglichkeit für die Flächenberechnung gibt

Wenn du die Schneidebeweise für die Flächenber das umgeschriebene Rechteck (beschriften!), dd Es ensteht immer ein Rechteck, das entweder

so hoch oder halb so in als Rechteck ein. wie das Deltoid ist.

Der Rhombus = die Raute:

Der Rhombus (die Raute) ist ein "verschobenes Quadrat". Die 4 Sej Diagonalen sind nicht gleich lang (die längere wird meist " e " ge aber zueinander im rechten Winkel und halbieren einander. DG mit den Maßen der beiden Diagonalen umgeschrieben werden. Welo keit für die Flächenberechnung des Rhombus gibt das? Gibt es weitere Jichkeit(o) Berechnung der Fächen?
Zeichne zuerst immer das umgeschriebene Rechteck (b) dann klebe die Rhombusteile darin als Rechteck ein. E steht

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Der Rhombus = die Raute:

Der Rhombus (die Raute) ist ein "verschobenes Quadrat". Die 4 Sej Diagonalen sind nicht gleich lang (die längere wird meist " e " ge aber zueinander im rechten Winkel und halbieren einander. De mit den Maßen der beiden Diagonalen umgeschrieben werden. Welo
rem Rechteck keit für die Flächenberechnung des Rhombus gibt das? Gibt es weitere yidithkeit(0, Berechnung der Fächen?
Zeichne zuerst immer das umgeschriebene Rechteck (b) dann klebe die Rhombusteile darin als Rechteck ein. E steht

Das Trapez: $A=\frac{(\mathrm{a}+\mathrm{c})}{2} \times \mathrm{h}=\mathrm{m}$

Das Trapez ist ein Viereck, bei dem 2 Seiten zueinander parallel stehen, genannt. Die Seiten bund d können gleich lang sein. Das ist beim gle bei dem die Diagonalen zueinander auch im rechten Winkel stehen der Diagonalen beim gleichschenkeligen Trapez zu sagen? Auch die Winkelo groß. Ebenso die Winkel γ und δ. In halber Höhe kann man beim $\gamma \quad$ die Mittent inzeichnen. Wenn du ihre Länge misst und mit a und c vergleichst, so kannst ese Länge leicht à h! Wie? Da a und c zueinand parallel sind, kann man die Höhe im rech inkel 7 zundlinie (dầ_uss nicht unbedingt die längste Seite sein) beliebig oft einzeichnen. senenny uft gegen den Uhrzeiger!
 Dieses Trapez sieht Trapez mi
nahe wie ej da c
aus,
fast Null
$(0,2 \mathrm{~cm})$

Das Trapez: $A=\frac{(a+c)}{2} \times h=m$
Das Trapez ist ein Viereck, bei dem 2 Seiten zueinander parallel stehen, genannt. Die Seiten bund d können gleich lang sein. Das ist beim gle
bei dem die Diagonalen zueinander auch im rechten Winkel stehen der Diagonalen beim gleichschenkeligen Trapez zu sagen? Auch die Winkelom groß. Ebenso die Winkel γ und δ. In halber Höhe kann man beim $\gamma \quad$ die Mitten Wenn du ihre Länge misst und mit a und c vergleichst, so kannst ese Länge leicht a aber die Länge
d bei ihm gleich inzeichnen.
 unbedingt die längste Seite sein) beliebig oft einzeichnen. senenny uft gegep den Uhrzeiger!

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Viereckskonstruktionen nach den

Name:
Konstruiere Vierecke nach folgenden Vors.

j) Die Diagonalen sind gleich lang, teilen m gleichen V
his und sind zueinander nicht im rechten Winkel

Viereckskonstruktionen nach den

Konstruiere Vierecke nach folgenden Vo.
a) Die Diagonalen sind gleich lang, halbieren einander und stehen z nander im
b) Die Diagonalen sind gleich lang, halbieren einander und stehen
c) Die Diagonalen sind verschieden lang, halbieren einander un len zueinander in

Gemeint sind:_a) Quadrat (=Raute/Rho
d) Die Diagonalen sind verschieden
e)Die Diagonalen sind verschieden
f) Die Diagonalen sind verschieden lang,
\rightarrow einande n einande en einander
ck (=Parallelogramm), c) Raute (=Parallelogramm)
stehen zueinander nicht im rechten Winkel et und stehen zueinander im rechten Winkel and stehen zueinander nicht im rechten Winkel

[^3] f) allgemeines unres siges Viereck

Alle Dreiecke lassen sich in Rechtecke vg

Die Fläche von Dreiecken ist immer halb so groß wie ie von Rechtecker anen um können. Es ist sinnvoll, beim Benennen der Dreieckseiten zuerst immé nennt man " \mathbf{c} ". Dann benennt man gegen den Uhrzeigersinn drehend a und gegenüber der gleichnamigen Seite a,b,c. Beim Eckpunkt A liegt de rinkel Alpíra liegt Beta (β), beim Eckpunkt C liegt Gamma (γ).
Von jeder Dreieckseite kann zum gegenüberliegenden Eckp an rech Ninkel zur Grundlinie eine Höhe eingezeichnet werden. Je nach Form des Dreieckes a en 10 Höhen ${ }^{2}$ halb des Dreieckes zu liegen kommen. Beim rechtwinkeligen Dreieck Seite haugleig hen. Um außen liegende Höhe leichter zu finden, drehst du am einfachsten mmer w so dass der Reihe nach jede Seite Grundlinie ist. Verlängere dann die dlinie thom damit du die Höhe im rechten Winkel zur Grundlinie einzeichnen kann Namen der \quad, h_{b}, h_{c}. Übrigens treffen sich die drei Höhen im Höhenlinienschnittpuy $\quad \mathcal{C}^{\prime}$. Um diesen zu fîm man manche Höhen nach oben verlängern

Dreiecke werden nach vers do sichtspunkten benannt:

3.) Kombina ariften für die Seiten und für die Winkel. Übrigens liegt der längsten Seite der größte ges der kürzesten Seite liegt der kleinste Winkel gegenüber.
a) spitzwink Jpitzwinkelig gleichschenkelig c) rechtwinkelig ungleichseitig
schem
e) stumpfwinkelig gleichschenkelig f) stumpfwinkelig ungleichseitig

Zeichne alle \quad in doppelter Größe auf Farbkarton, beschrifte alles und zeige bei jeder dieser Flächen, worin is ame begründet ist.

Alle Dreiecke lassen sich in Rechtecke ve

 (oder sie lassen sich als Hälfte eines umgeschriebenen RDie Fläche von Dreiecken ist immer halb so groß wie ie von Rechtecken können. Es ist sinnvoll, beim Benennen der Dreieckseiten zuerst imme nennt man " c ". Dann benennt man gegen den Uhrzeigersinn drehend a und gegenüber der gleichnamigen Seite a,b,c. Beim Eckpunkt A liegt de rinkel Alpito. liegt Beta (β), beim Eckpunkt C liegt Gamma (γ).
Von jeder Dreieckseite kann zum gegenüberliegenden Eckp m recl inkel zur Grundlinie eine Höhe eingezeichnet werden. Je nach Form des Dreieckey cen 10 Höhen y halb des Dreieckes zu liegen kommen. Beim rechtwinkeligen Dreieck Seite ol zuglei fen. Um außen liegende Höhe leichter zu finden, drehst du am einfachsten nach jede Seite Grundlinie ist. Verlängere dann die im rechten Winkel zur Grundlinie einzeichnen kann llinie th Namen der mmer wo dass der Reihe fen sich die drei Höhen im Höhenlinienschnittpuy nach oben verlängern

Dreiecke werden nach vers dic vichtspunkten benannt:

3.) Kombina ariften für die Seiten und für die Winkel. Übrigens liegt der längsten Seite der größte ges , der kürzesten Seite liegt der kleinste Winkel gegenüber.
a) spitzwink tleicı spitzwinkelig gleichschenkelig c) rechtwinkelig ungleichseitig e) stumpfwinkelig gleichschenkelig f) stumpfwinkelig ungleichseitig

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Alle Dreiecke lassen sich in Rechtecke ve

Es gibt mehrere Möglichkeiten, Dreiecke in (halbe umgeschrieb So ist die Dreiecksfläche ganz leicht zu berechnen.

1.) Das Dreieck hat die halbe Fläche des umgeschriebenen Rechteckes. Die Dreiecke 1b und 2b gehören ja nicht zum Dreieck, können aber zu einem gleich großen Dreieck zusammengelegt werden.

Benütze diese hier gezeigten Möglichkeite den ilu ven Dreiecken. Lege die ausgeschnittenen Dreiecke aber zuerst so vor dich hin, drad du sie besoit. beurteilen kannst. Bei manchen von ihnen kannst du auch noch andere Wege finden, die Dreiteo Recktecke zu verwandeln. Vor dem Aufkleben der Teile immer das \downarrow srechteck und das Orginaldreieck zeichnen. Dann erst

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Alle Dreiecke lassen sich in Rechtecke ve

(oder sie lassen sich als Hälfte eines umgeschriebenen Ry ckes
Es gibt mehrere Möglichkeiten, Dreiecke in (halbe umgeschrieb So ist die Dreiecksfläche ganz leicht zu berechnen.

1.) Das Dreieck hat die halbe Fläche des umgeschriebenen Rechteckes. Die Dreiecke 1 b und 2 b gehören ja nicht zum Dreieck, können aber zu einem gleich großen Dreieck zusammengelegt werden.

Benütze diese hier gezeigten Möglichkeite den mu isn Dreiecken. Lege die ausgeschnittenen Dreiecke aber zuerst so vor dich hin, aras du sie besolm, Beinteilen kannst. Banchen von ihnen kannst du auch noch andere Wege finden, die Dreié Recktecke zu verwandeln. Vor dem Aufkleben der Teile immer das \downarrow srechteck und das Orıginaldreieck zeichnen. Dann erst

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Die verschiedenen Flächen (alle haben einen Umfang von 24 cm) werden

${ }^{\mathrm{C} 2.2}$
 Kreis, Quadrat und Rechteck im F und Umfangvergleich (2)

Hier ist eine große Menge von Kreisplättchen, die in geometrische gegeben werden sollen. Alle diese Figuren haben 24 cm Umfang. In m

Kreis, Quadrat und Rechteck im F und Umfangvergleich (2)

Hier ist eine große Menge von Kreisplättchen, die in geometrische gegeben werden sollen. Alle diese Figuren haben 24 cm Umfang. Figuren passen die meisten?

Der untere Blattteil wird abgetrenn Form kannst du die meisten Kreise se,

s Löcher herausgeschnitten. Durch welche bei gleichem Umfang die größte Fläche?

Methodisch - didaktische Vorbemerkungen zu

D) Raummaße und Würfel

Wieder ist hier der Grundsatz des „handelnden Lernens" („learning by doing") allen anderen „Be-lernungs"-methoden vorzuziehen. Als Lehr- und Lernmittel dienen hier natürlich die in diesem Kapitel vorhandenen Arbeitsblätter zum Bau der verschiedenen Würfel und anschließend die Arbeitsblätter für die Maßumwandlungen. So wie Flächen nur mit Hilfe von Längenmaßen errechnet und nicht wirklich gemessen werden können, gilt das auch für die Volumina der verschiedenen Körper. Einzig Hohlmaße (z.B. transparente Messbecher aus der Küche oder kleinere bemaßte Messgläser) erlauben eine direkte Volumensmessung (durch Füllen z.B. mit überlagertem Reis oder mit Linsen) oder eine indirekte Volumensmessung (wenn der Körper im Messbecher komplett ,„zugedeckt"und hernach entnommen wird).
Bitte auch solche überlagerte Lebensmittelkörner nicht wegwerfen, sondern als Kleintierfutter interessierten SchülerInnen mit nach Hause geben!

Die zu bauenden Würfel sollten nicht komplett zugeklebt werden: Die nach oben stehenden Klebefalze werden zur Versteifung nach innen geklebt, die Klebefalze am Deckel dienen zum Schließen. Im 10-cm-Würfel kann dann der 9-cm-Würfel aufbewahrt werden, in diesem der 8-cm-Würfel und so weiter. Da man die Würfel immer wieder öffnen kann, kann man sie auch mit den 1-cmWürfeln ($=\mathbf{1} \mathbf{c m}^{\mathbf{3}}$) füllen.

Vorüberlegung ohne Probieren: Wie viele cm^{3} passen in den $2-\mathrm{cm}-W$ Ẅrfel, wie viele in den $3-\mathrm{cm}-$ Würfel....... Schreib deine Schätzung nieder und vergleiche nach dem Probieren mit der Wirklichkeit! Wie kann man das ausrechnen? Kannst du dafür auch eine Rechenregel (eine Formel mit Variablen) finden?

Achtung: Während der Erarbeitungsphase für das Volumen darf auf keinen Fall versucht werden, auch gleich die Oberfläche der Würfel zu berechnen. Ist diese Phase sicher abgeschlossen, bereitet auch das Erarbeiten der Würfeloberfläche kein Problem!

Für den \mathbf{m}^{3} : Unbedingt ein zusammensteckbares Modell dafür verwenden! 12 Dübelholzstangen aus dem Baumarkt und 8 als Ecken durchbohrte Holzwürfel ergeben den ersten m${ }^{3}$.

Denkanstoß: Wenn wir noch einen m^{3} anbauen wollen, und dann noch einen um die Ecke: Wie viele Holzwürfel und Dübelholzstangen werden da noch benötigt? Und jetzt möchten wir da noch einen 4. $\mathrm{m}^{\mathbf{3}}$ in die entstandene Ecke hineinstellen!

Wichtig:
Im Geometrieunterricht der Mathematik trennen wir viele Körper zu sehr nach Sonderformen, ohne ihre Gemeinsamkeit zu betonen: Würfel, Quader, Prisma (mit dem Hauptaugenmerk auf das Dreiecksprisma)...

Grundsätzlich sind alle diese Körper Prismen und so gilt für sie alle die gleiche allgemeine Oberflächenformel (Oberfläche ist $\mathbf{2}$ Grundflächen plus der Mantel) und die gleiche allgemeine Volumsformel (Volumen ist Grundfläche mal der Höhe).

Methodisch ganz wichtig ist also, zuerst das Gemeinsame aller dieser Körper und die allgemeinen Formeln zu betonen. Dann kann man die speziellen Formeln selbst finden lassen!

Erreichbare Kompetenzen

im Bereich der Raummaße und Würfel

- Sicheres Beherrschen der Raummaße
- Den Sportgedanken durch Stoppen der Zeit in die Übungsreihen einbringen
- Sicheres Beherrschen des Unterschiedes zwischen Oberfläche und Volumen
- Sicherheit im Umgang mit Lineal, Dreieck, Rollmaß, ,ZZoll"stab...
- Die Raum-Maßeinheiten des praktischen Lebens benützen können, gerade in Verbindung mit den Hohlmaßen und den Massemaßen
- Sich die Raummaße gut vorstellen können
- Zuordnungstabelle von Kantenlänge von Würfeln und ihren Raummaßen

2 Flächen des 1 dm3 - ($=10 \mathrm{~cm}$)-Wür ${ }^{(3)}$ opieren!)

 (= $1 \mathrm{~cm}-$ Würfel) und der 2 cm - Würfel.

2 Flächen des 1 dm 3 - (= $\mathbf{1 0} \mathbf{c m}$)-Wür (${ }^{(3)}$

Die Netze des $1 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \xrightarrow{D}$ 1.1.2
Die Netze des 1 cm-, 2 cm -, 3 und 4 cm - Würfels

Die Netze des $1 \mathrm{~cm} 2 \mathrm{~cm}-3 \xrightarrow{D}$ 1.1.2

Das Netz des 6 cm - Würfels und $1 \mathrm{cn} \quad$ fel

Das Netz des 6 cm - Würfels und 1 c


```
Der 7 cm - Würfel in 2 Tei
```


2 Flächen des 9 cm - Würfels (3

2 Flächen des 10 cm - Würfels ($1 \mathrm{~d}=1$ ter)

Die Klebefalze sind auch eingefärbt, damit beim Kleben keine weißen Klebekanten entstehen

Modell aber auch die Überta wie vielen cm^{3} er man das ganz besteht. In
einfach aus? Ein cm^{3} zeigt sogan $\quad \mathrm{mm}^{3}$. Wie viele sind in einom cm^{3} ? Wie sind dann im ganzen dm^{3}
m feine (z.B. Hirse) und damit h^{3}. Schütte dann die Küchenmaß. Welches Vo, Flüssigkeit wird hier

Der wievielte Teil dieses Volumens ist dann aber $1 \mathrm{~cm}^{3}$? Wie heißt die teinische Zahlensilbe für diesen vom Ganzen? Wie heißt also Flüssigkeitsmenge von $1 \mathrm{~cm}^{3}$?
(
Die langen Klebefalze werden gefalzt und so gebogen, wie es diese Zeichnung hier rechts zeigt
1.2.3

Aus: Geometrische Fläcıen und Körper zum "Be -greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Das ist der Deckel des Würfels. Der 1 cm breite Streifen wird auf kann der Würfel geschlossen und geöffnet werden. Durch den R In ist er so kann er zum Messen des Volumens z.B. mit Hirse ($1 \mathrm{dm}^{3}=$

Der Rahmen erhält keine Doppelklebefalze sondern er wir nur auf die Falze der Seitenwände geklebt.
D 2.1.

 Zuerst die Lösung 1 ausfïllen, dann diese Spalte nach hinten | Zuerst die Lösung 1 ausfüllen, dann diese Spalte nach hinten |
| :---: |
| knicken, die Lösung 2 noch einmal ausfüllen und die Ergebnisse | vergleichen. Übung schafft Sicherheit und bringt dir Tempo!

 -

Zuerst die Lösung 1 ausfüllen, dann diese Spalte nach hinten knicken, die Lösung 2 noch einmal ausfüllen und die Ergebnisse vergleichen. Übung schafft Sicherheit und bringt dir Tempo!

-

Name:

Trage bitte rechts unter Lösung 1 bzw. 2 für deinen eigenen Leistungsvergleich die benötigte Zeit ein:

[^4][^5]

Name:
Arbeitsblatt:
Raummaße

Arbeitsblatt:
Raummaße (Achtung: 11 Wasser = 1 kg / 100

Arbeitsblatt:
Raummaße (Achtung: 1 I Wasser $=1 \mathrm{~kg}$ / 1000

Name:
Arbeitsblatt:
Raummaße (Achtung: 11 Wasser $=1 \mathrm{~kg}$ / 1000 l

Name: Lösungen

Arbeitsblatt:

Raummaße (Achtung: 11 Wasser $=1 \mathrm{~kg}$ / 1000 l

Methodisch - didaktische Vorbemerkungen zu E) Massenmaße

Ganz entscheidend ist die Zuordnung von Gramm zu cm ${ }^{3}$ bzw. ml von Kilogramm zu dm ${ }^{\mathbf{3}}$ bzw. Liter von Tonnen zu m ${ }^{3}$.

Abstract

Auch hier gilt immer wieder: Schätzen, messen (wägen), üben, üben, üben.... Die in Österreich und Süddeutschland üblichen Dekagramm (dag), also 10 Gramm, als eigenes Maß, sind angesichts heute üblicher digitaler Waagen (nur mit g und kg!) wohl ebenso am Aussterben, wie die „Pfund" in Deutschland und die in Österreich (sowie in der Schweiz und Süddeutschland) gegenüber Norddeutschland unterschiedlichen Zentner (,,q" von „Quintal" = 100 kg bzw."Ztr" = 50 kg)

Erreichbare Kompetenzen

im Bereich der Massemaße

- Sicheres Beherrschen der Massenmaße
- Den Sportgedanken durch Stoppen der Zeit in die Übungsreihen einbringen
- Sicheres Beherrschen des Zusammenhanges zwischen Raummaßen (auch Hohlmaßen) und Massemaßen
- Sicherheit im Umgang mit den Umrechnungen
- Die Masse-Maßeinheiten des praktischen Lebens benützen können
- Sich die Massenmaße gut vorstellen können

Methodisch - didaktische Vorbemerkungen zu

F) Winkel,Winkelmaße und Winkelfunktionen

Abstract

Auch hier ist der Grundsatz des ,hhandelnden Lernens" (,,learning by doing") allen anderen „Be-lernungs"methoden vorzuziehen. Das Messen von Winkeln scheint vorerst einmal für unsere SchülerInnen besonders leicht zu sein und daraus folgt eine Reihe von Fehlermöglichkeiten, die uns Lehrern bestens bekannt sind:

Am Winkelmesser stehen immer 2 Zahlen untereinander für die gleiche Winkelmarke. Um dieser Falle zu entkommen, gibt es mehrere Möglichkeiten:
a) Das Aufspannen eines Winkels zwischen Daumen und Zeigefinger:

Ist es ein linksdrehender Winkel (z.B. der Winkel α am linken Ende einer Strecke), dann nehmen wir die linke Hand und spreizen den Handteller vom Daumen ab. Das geht wohl meist nur bis zu 90°, größere Winkel schaffen wir so nicht mehr oder es tut bereits weh! Schätze also 30° oder 60° zwischen Daumen und Handteller! Wie weit müssten wir für 120° oder 150° spreizen?

Für einen rechtsdrehenden Winkel (z.B. der Winkel β am rechten Ende einer Strecke) nehmen wir eben die rechte Hand und das oben Gesagte gilt spiegelgleich.
b) Die zweite und ganz verlässliche Methode ist es, bei angelegtem Winkelmesser immer von der Winkelbasis in Zehnerschritten wegzuzählen. Dann gibt es auch keine Fehler, wenn der Winkel nicht genau einer Zehnerstufe entspricht.
c) Das Üben mit dem Vollkreis -Winkelfeldmesser „Wie α und β größer werden" von Blatt F 4.3 dieser Mappe soll das Aussehen von Winkelfeldern unter 90° und solchen über 90° einprägen helfen. Als Demonstrationsmodell sind dafür F 4.1 und 4.2 vorgesehen.
d) So wichtig die Winkelfunktionen sind, so unanschaulich sind sie für viele Schüler. Gerade hier kann das praktische Arbeiten mit den angebotenen Modellen und methodischen Zugängen eine große Hilfe zum Verstehen sein.

Ganz wesentlich sind die Übungsblätter zu den Winkelsummen von Dreiecken und Vierecken. Auch hier prägt erst das praktische Arbeiten mit den Winkelsummen den Lehrsatz, der so selbst erarbeitet wird, in das Gedächtnis ein.

Erreichbare Kompetenzen

im Bereich der Winkelarten, Winkelmaße und Winkelfunktionen

- Sicheres Kennen der Winkelarten
- Sich die wichtigen Winkelarten gut vorstellen können
- Winkel mit $30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 270^{\circ}$ zumindest rechtsdrehend einigermaßen schätzen können
- Sicheres Beherrschen der Winkelmaße und Kennen ihrer Teile
- Wissen, wann linksdrehende oder rechtsdrehende Winkelmesserskalen Verwendung finden
- Sicherheit im Umgang mit Lineal, Dreieck und Zirkel.
- Die Winkelkonstruktionen des praktischen Lebens $\left(60^{\circ}, 90^{\circ}, 45^{\circ}, 120^{\circ}, \ldots\right)$ benützen können
- Im Dreieck den Zusammenhang von Winkel und Länge der gegenüberliegenden Seite sicher kennen
- Den Drehungssinn bei der Benennung von Eckpunkten, Winkeln und Seiten der Dreiecke sicher wissen
- Die richtige Benennung der Winkel
- Bei den Winkelfunktionen sicher wissen, dass sie gleichermaßen für beide spitze Winkel gelten und dass man mit ihnen immer ein drittes Bestimmungsstück berechnen kann
- Da die Winkelfunktionen nur für rechtwinkelige Dreiecke gelten, kann man sich durch Üben das Wissen erarbeiten, wie man nicht rechtwinkelige Dreiecke in rechtwinkelige Dreiecke zerlegen kann,
- Der Einheitskreisist ein wesentlicher Zugang zum Verständnis von sinus und cosinus und für die Brechnung von tangens. Wie entstehen die verschiedenen Graphen? Der Begriff „Funktion" wird fixiert.

Winkel und Winkelarten

Als "Winkel" bezeichnet man normalerweise das gesamte Winkelfeld zwi Die Schenkel treffen sich im Scheitel, der mit Großbuchstaben (A, B, C..) be der Winkel eigentlich der Richtungsunterschied zwischen 2 einander schneidendeıi lelen Geraden. Dabei entstehen auch Scheitelwinkel und Nebenwinks ;inkel und Normalfall 180 Grad.) Das Winkelfeld oder einfacher gesagt der Wiv frd mit Bus betragen im schen "Alpha-bet" benannt: $\mathbf{A} \rightarrow \alpha$ (alpha), $\mathbf{B} \rightarrow \beta$ (beta), \mathbf{C}

Winkel und Winkelarten
 Zeichne zuerst den Winkelbogen ein. Er soll ein kleiner Kreis

 punkt der Scheitelpunkt ist. Miss die hier gezeichneten Vinkel, Do nach mit den griechischen Buchstaben und schreibe dig Wenn du das Winkelfeld ausschneidest und aufklebst runter! Verlängere zum Messen nötigenfalls die Sch ikelgrößereibe auch die
 vie der Reihe $A=42^{\circ}$). art da-

Die Winkelsumme der Dreie

Schneide die hier konstruierten Flächen aus. Dann beschrifte ihre Buchstaben und zeichne die Winkelbögen ein.. Anschließend rei klebe sie so zusammen, dass die gerissenen Linien nach außen so ginalecken neue Winkelgrößen ergeben. Miss diese neuen Winkelgro mit diesen Orischreibe dazu, was dir auffällt. Die durch das Abreissen der on "besciáa stfläche klebe daneben hin, zeichne die abgerissenen Spitzen dazu, b fifte die (fehleir kel und Eckpunkte, aber auch die diesen zugehörigen und jeweils nübery qnden Seiteın ie Benennung läuft gegen den Uhrzeigersinn. Schreibe dazu, wie die W umme ist. Miss auch die einzenenWinkelgrößen. Wenn du den Winkel nicht ge messen ast, weil chenkel (Sei-

Die Winkelsumme der Dreie

Schneide die hier konstruierten Flächen aus. Dann beschrifte ihre Buchstaben und zeichne die Winkelbögen ein.. Anschließend rei klebe sie so zusammen, dass die gerissenen Linien nach außen so. ginalecken neue Winkelgrößen ergeben. Miss diese neuen Winkelgro.
cel mit schreibe dazu, was dir auffällt. Die durch das Abreissen der on "bescita mit diesen Orikelsummen) und be daneben hin, zeichne die abgerissenen Spitzen dazu, Eckpunkte, aber auch die diesen zugehörigen und jeweily nung läuft gegen den Uhrzeigersinn. Schreibe dazu, wie einzenenWinkelgrößen. Wenn du den Winkel nicht ge

Die Winkelsumme der Vier

Schneide die hier konstruierten Flächen aus. Dann beschrifte ihre Buchstaben und zeichne die Winkelbögen ein.. Anschließend rei klebe sie so zusammen, dass die gerissenen Linien nach außen scy, ginalecken neue Winkelgrößen ergeben. Miss diese neuen Winkelgro schreibe dazu, was dir auffällt. Die durch das Abreissen der nn "beschà el mit 2.2 el mit 2.2 stfläche klebe daneben hin, zeichne die abgerissenen Ecken dazu, b Eckpunkte, aber auch die diesen zugehörigen (und jewe; genden Seiten. Die Benennung läuft gegen den Uhrzeig kelsumme ist. Miss auch die einzenenWinkelgrößen. kannst weil die Schenkel (Seiten) zu kurz sind, verlä

```
ffte die (fehlen
``` kel und
 el Cill 2.2

\section*{Die Winkelsumme der Vier}

Schneide die hier konstruierten Flächen aus. Dann beschrifte ihre Buchstaben und zeichne die Winkelbögen ein.. Anschließend reis klebe sie so zusammen, dass die gerissenen Linien nach außen sc, ginalecken neue Winkelgrößen ergeben. Miss diese neuen Winkelgrom Sel mit schreibe dazu, was dir auffällt. Die durch das Abreissen der nn "beschan
\(\qquad\) elsummen) und
tfläche kle-
Afte die (fehlent kel und be daneben hin, zeichne die abgerissenen Ecken dazu, b Eckpunkte, aber auch die diesen zugehörigen (und jewej name leichen Eck , ikt anliegenden Seiten. Die Benennung läuft gegen den Uhrzeig I. Schr dazu, wie groß die Winkelsumme ist. Miss auch die einzenenWinkelgrößen. I du d Inkel niy enau messen

Überprüfe die Winkelsumme auch noch bei anderen Flächenarten die du kennst.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Bemale bei diesen Figuren die In Winkelarten wie oben in der Legende, schneide zuerst das Dreieck aus und Nun klebe diese an den Spit Nun schneide auch noch d ppl rwin auf. Wie viel Grad ergeben Das Gleiche mach anschließelturadrat quallt dir auf und beachte den Unter-

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Die Winkelsummen an und in unregelmäßige}
(Polygone sind Vielecke wie Trigon, Tetragon, Pentagon, Hexagon,
\(=\begin{gathered}\text { Peripheriewinkel } \\ \begin{array}{c}\text { liegen an der Peripherie } \\ \text { des Polygons }\end{array}\end{gathered}\) des Polygons
 \(=\underset{\substack{\text { Sugänzen die Peripheriewinkel }}}{\text { Supplementärwinkel }}\) erganzen
auf \(180^{\circ}\)

Bemale bei diesen Figuren die einzelnen Winkelarten zuerst das Dreieck aus und dann schneide davon Nun klebe diese an den Spitzen im Drehungssinn zy Nun schneide auch noch die Supplementärwinke auf. Wie viel Grad ergeben sich?
Das Gleiche mach anschließend beim Tetragon una ben in der la

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott

\section*{Auswertung:}

\section*{Winkelsummen an und in regelmäßigen und unrege}
(Polygone sind Vielecke wie Trigon, Tetragon, Pentagon, Hexago
\(==\underset{\text { Periphan der Peripherie }}{\text { Pieginkel }}\) liegen an der
des Polygons

\(=\) Supplementärwinkel ergänzen die Peripheriewinkel auf \(180^{\circ}\)

Noch ein Zeichen brauchen wir: Den griechis Er bedeutet so viel wie
Für jene Polygone, die wir nicht konstruieren, könne

Dieser Vollkren elmon spricht mit seiner Bemaßung den am Markt befindlichen Ge .sch-Zeí Dreícuen (DG- bzw. TZ- Dreiecke). Auf eine transparente Kopierfo bnitten kann er sehr gut als Winkelmesser für die praktische Ar-

Dieser Vollkren elmo spricht mit seiner Bemaßung den am Markt befindlichen

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Dieser Vollkr, kelin, ntspricht mit seiner Bemaßung keineswegs den am Markt by Men Ge, \(\begin{gathered}\text { isch-zunnen-Dreiecken (DG- bzw. TZ- Dreiecke). Die Bemaßung } \\ \text { hend bzw. rechtsdrehend aufgetragen. } \\ \text { ierfolie gedruckt und ausgeschnitten kann er sehr gut als Win- }\end{gathered}\) kelim - die pran

Dieser Vollkra kelin ntspricht mit seiner Bemaßung keineswegs den am Markt bf -ohen Ge, isch-zuchnen-Dreiecken (DG- bzw. TZ-Dreiecke). Die Bemaßung hend bzw. rechtsdrehend aufgetragen. ierfolie gedruckt und ausgeschnitten kann er sehr gut als Winkelǹm die pran Arbeit verwendet werden.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Winkel \(\alpha\) wächst (Vollkreiswinkelm co \(0^{\circ}\)}

Für die Verwendung als Unterrichtsmodell zur Versteifung laminieren!

Um zeige wie der wower am linken Ende einer Geraden immer größer wird, schneidet man diese 'messer - z.B. auf blauen Kopierkarton gedruckt - zuerst einmal einfach aus. In den Mitte \(\quad\) witig ein rundes Loch für eine Briefklammer gestochen (aufpassen, dass nichts einreißt! lann vom Rand her unter der dicken Linie samt strichliertem Bogen
 escineht mit dem Vollkreiswinkelmesser für \(\beta\). (Andere Kartonfarbe!) Dann asser Druckseite an Druckseite gelegt und mit der Briefklammer (eventuell Ine Beilagscheibe beifügen!) zusammenmontiert. Die Winkel werden beim werden. Au aseite gehört entlang des geraden Einschnittes bis zum Zentrum ein dicker Strich gezogen.

Für die Verwendung als Unterrichtsmodell zur Versteifung laminieren!

Um zeige
wie der Winurd am linken Ende einer Geraden immer größer wird, schneidet man diese messer-z.B. auf blauen Kopierkarton gedruckt - zuerst einmal einfach aus. In den Mitte \(\quad\) utig ein rundes Loch für eine Briefklammer gestochen (aufpassen, dass nichts einreißt!) Jann men vom Rand her unter der dicken Linie samt strichliertem Bogen \(\mathrm{e}_{\text {ander }}^{\text {Dretion }}\) gescineht mit dem Vollkreiswinkelmesser für \(\beta\). (Andere Kartonfarbe!) Dann ssser Druckseite an Druckseite gelegt und mit der Briefklammer (eventuell ine Beilagscheibe beifügen!) zusammenmontiert. Die Winkel werden beim werden. Aun arseite gehört entlang des geraden Einschnittes bis zum Zentrum ein dicker Strich gezogen.

\section*{Der Winkel \(\beta\) wächst (Vollkreiswinkelm o \(0^{\circ}\)}

Um zeige vie der Witimerp am rechten Ende einer Geraden immer größer wird, schneidet man diesen esser - z.B.auf grünen Kopierkarton gedruckt - zuerst einmal einfach aus. In den Mittelp virtu ein rundes Loch für eine Briefklammer gestochen (aufpassen, dass nichts einreisst!) en vom Rand her unter der dicken Linie samt strichliertem Bogen ei Das g geschient mit dem Vollkreiswinkelmesser für \(\alpha\). (Andere Kartonfarbe!) Dann ser Druckseite an Druckseite gelegt und mit der Briefklammer (eventuell aun He Beilagscheibe beifügen!) zusammenmontiert. Die Winkel werden beim Dreheis io durch auschlitze gesteckt und durch Weiterdrehen kann das Winkelfeld vergrößert werden. Auln seite gehört entlang des geraden Einschnittes bis zum Zentrum ein dicker Strich gezogen.

\section*{Der Winkel \(\beta\) wächst (Vollkreiswinkelm \(\quad 0^{\circ}\)}

Für die Verwendung als Unterrichtsmodell zur Versteifung laminieren!

Um zeige
00 g man diesen esser - z.B.auf grünen Kopierkarton gedruckt - zuerst einmal einfach aus. In den Mittelp, vitu ein rundes Loch für eine Briefklammer gestochen (aufpassen, dass nichts einreisst!) ann w, en vom Rand her unter der dicken Linie samt strichliertem Bogen ei Das g geschient mit dem Vollkreiswinkelmesser für \(\alpha\). (Andere Kartonfarbe!) Dann ser Druckseite an Druckseite gelegt und mit der Briefklammer (eventuell he Beilagscheibe beifügen!) zusammenmontiert. Die Winkel werden beim Drehens \(\quad{ }_{\mathrm{i}}^{\mathrm{g}}\) durch aruSchlitze gesteckt und durch Weiterdrehen kann das Winkelfeld vergrößert werden. Aul~ seite gehört entlang des geraden Einschnittes bis zum Zentrum ein dicker Strich gezogen.

\section*{Wie \(\alpha\) und \(\beta\) größer werden}

Um zeigen zu können, wie das Winkelfeld \(\alpha\) am linken und \(\beta\) am rechten Ende einer Geraden immer größer werden, schneide diese Vollkreiswinkelmesser zuerst einmal einfach aus. (Eventuell vorher laminieren!)
Dann tausche mit einem Mitschüler den zweiten Winkel in einer anderen Farbe. In die Mittelpunkte wird sorgfältig ein rundes Loch für eine Briefklammer gestochen (aufpassen, dass nichts einreisst!) Und dann wird außen vom Rand her die strichlierte Linie samt Bogen eingeschnitten. Bei \(\beta\) schneide unterhalb der dicken schwarzen Linie und entlang des strichlierten Bogens. Dann werden die heiden Winkelmesser Druckseite an Dr gelegt und mit der Briefklammer Außenseiten noch eine Beilagsch gegenseitig durch die Schlitze

\section*{Wie \(\alpha\) und \(\beta\) größer werden}

Um zeigen zu können, wie das Winkelfeld \(\alpha\) am linken und \(\beta\) am rechten Ende einer Geraden immer größer werden, schneide diese Vollkreiswinkelmesser zuerst einmal einfach aus. (Eventuell vorher laminieren!)
Dann tausche mit einem Mitschüler den zweiten Winkel in einer anderen Farbe. In die Mittelpunkte wird sorgfältig ein rundes Loch für eine Briefklammer gestochen (aufpassen, dass nichts einreisst!) Und dann wird außen vom Rand her die strichlierte Linie samt Bogen eingeschnitten. Bei \(\beta\) schneide unterhalb der dicken schwarzen Linie und entlang des strichlierten Bogens. Dann werden die beiden Winkelmesser Druckseite an Dr gelegt und mit der Briefklammer
 Außenseiten noch eine Beilagsch gegenseitig durch die Schlitze system zur Anwendung, z.B.: 23,85 \({ }^{\text {² }}\).
Für die Unı, \(\quad\) ibberlege dir zuerst, wie man z.B. von 90 Grad auf 100 gon kommt: dividiert durch 9 und dann mal 1 egdminute ist \(1 / 60\) und jede Gradsekunde ist \(1 / 3600\) eines Grades. So kannst du also auch auf die Umm ng in Teile von gon überlegen.

Zy-Lehre forntion und für besonders Interessierte: D mit Neugraden (der Vollkreis hat \(400^{\text {g }}=400\) gon) kommt teilweise der Landvermessung - zu Anwendung. Bei der Teilung der Neudas Dezan system zur Anwendung, z.B.: 23,85.
Für die Untr iuberlege dir zuerst, wie man z.B. von 90 Grad auf 100 gon kommt: dividiert durch 9 und dann mal \(\quad\) gadminute ist \(1 / 60\) und jede Gradsekunde ist \(1 / 3600\) eines Grades. So kannst du also auch auf die Umm ng in Teile von gon überlegen.

\section*{F 6.1 \\ Der Thaleskreis}

Die Grundlinie Eises samt den beiden strichlierten Li
tises samt den beiden strichlierten Linien einschneiden. Nun wird dieses Blatt so auf einen Unterlagekarton aufgeklebt, dass die beiden z nach un ingeschoben und dann mit ihrem Nullpunkt um den Eckpunkt A bzw. B gedreht werden können. Mit einer Stecknadel, die kt des dann durch den zugehörigen Eckpunkt gesteckt wird (achte darauf, dass du nicht zu weit durchstichst und dann den Su ny aber dem Halbkreis unendlich oft so drehen, dass sich die Lineale jeweils genau über dem Kreisbogen kreuzen. So entund vergleiche nun die entstandenen Winkel des Dreiecks.
Man kann dieses Modell natürlich spater auch firr den Pythagoräischen Lehrsatz verwenden!
aälfte
 \begin{tabular}{|cc|}
\hline Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott \\
Viele weitere Modelle sind zu finden auf: \(\quad \begin{array}{l}\text { www.mathematikmodelle.net }\end{array}\) \\
\hline
\end{tabular}

\title{
Die Winkelfunktionen: sinus, cosinus, tangens, cotr ens \\ Beim Rechnen mit den Winkelfunktionen geht es immer um das Längenvent.
} Winkel zueinander. Schon bei der Konstruktion von Dreiecken hast du qemerkt, a der größte Winkel gegenüber liegt und der kleinsten Seite der kleinste rel. Das gilt winkeligen Dreieck.
Es verwirrt dich vielleicht am Anfang, dass das Seitenverhältnis ander a Ch angesghrieben wird, aber da brauchst du dich nur an die Arithmetik zurück erinnern. Very ist es s; ch auch, y in den Formeln immer der Winkel \(\alpha\) genannt wird. Die Winkelfunktionen gel Cich Winkel \(\beta\). Das
ist auch der Grund, warum auf den Taschenrechnern der Name da
 reckseiten und der Bten Seite immer wh im recht-

Wenn du das Seitenverhältnis mit der entsprechenden Winkelfunktion erré thast, kannst du mit dem Taschenrechner durch die entsprechende Umkehrt? \(\quad\) ist das z.B. \(\sin ^{-1}\)) den zugehörigen Winkel ablesen.

Mit den Linealen hier unten (schneide und üben. Mit dem Lineal entsteht di die zweite und dritte Seite) musst du umwandeln. Trag alle abgelesenen W Rechnungen.

Die Winke, das Verhältnis a
können gleichermaßen bei beiden nicht-rechten Winkeln verwendet werden, da es immer um Seiten und Winkel ad der Winkel untereinander geht und dieses nicht von der Benennung der Eckpunkte, der Uhrzeigersinn abhängt

\section*{Wertetabelle für die Winkelfun}

Trag in die Wertetabelle die in deinen Versuchen mit F 6.2 und F sollst du abwechselnd entweder 2 Seiten oder eine Seite und Damit bestimmst du, welche Maße gegeben sind und du kannst nun die dich zu den anderen - zur Selbstkontrolle abgelesenen - Werten führt. deiner Rechnungen mit den abgelesenen Werten überein, dany in die rechte, anktion wählen, die Ergebnisse ein.

Der Einheitskreis: Die verschiebbaren Gegenkatheten für Qy

\section*{Der Einheitskreis:}

\section*{Die Werte der Winkelfunktionen am Einheitskreis mit r=10 und ì \\ von 0 . bis 120 。}

Trage die aus den einzelnen Quadranten des Einheitskreises abgelesenen bzw. schiedenenen Grade hier ein und ergänze die Punkte zu Kurven. Zuerst für sinu cosinus und tangens. Auf den letzten Streifen gehört die Farben-Legende. Für die Darste du eventuell quer darunter geklebte Blätter.

Der Einheitskreis: Die Werte der Winkelfunktionen am Einheitskreis mit r=1 und ; von \(120^{\circ}\) bis \(240^{\circ}\)

Wenn du die Werte für die Winkelfunktionen von = bis 360 Grad in ihren Farı du die 3 Wertediagramme ausschneiden und zu einem langen Band zusammenklebè über die 360 Grad hin schön zeigt.

\section*{Der Einheitskreis:}

\section*{Die Werte der Winkelfunktionen am Einheitskreis mit r=1 und j von \(240^{\circ}\) bis \(360^{\circ}\)}

Wenn du die Werte für die Winkelfunktionen von \(=\) bis 360 Grad in ihren Farbo die 3 Wertediagramme ausschneiden und zu einem langen Band zusammenkleben, 0 die 360 Grad hin schön zeigt. Lass auch am Ende einen breiten Klebefaly ben!

\section*{Der Einheitskreis:}

\section*{Die Werte der Winkelfunktionen am Einheitskreis mit \(r=1\) und \(;\) von \(0^{\circ}\) bis \(360^{\circ}\)}

Die Werte der Winkelfunktionen am Einheitskreis und ihre dazugehöriga und anschaulich sichtbar gemacht werden. Dazu wird der lange gifen mit on mit 2 Büroklammern zu einem Kreis geformt und direkt auf den Einheitsk estellt. Daben A_Graphen nach außen oder nach innen sichtbar zum Kreis geformt werd

\section*{Methodisch - didaktische Vorbemerkungen zu G) Quader und Würfel}

\begin{abstract}
Als Lehr- und Lernmittel dienen hier natürlich die in diesem Kapitel vorhandenen Arbeitsblätter zum Bau der verschiedenen Quader, Würfel und zusammengesetzten Körper. So wie Flächen nur mit Hilfe von Längenmaßen errechnet und nicht wirklich gemessen werden können, gilt das auch für die Volumina der verschiedenen Körper. Einzig Hohlmaße (z.B. transparente Messbecher aus der Küche oder kleinere bemaßte Messgläser) erlauben eine direkte Volumensmessung (durch Füllen z.B. mit zeitlich abgelaufenem Reis oder mit Linsen) oder eine indirekte Volumensmessung (wenn der Körper im Messbecher komplett „zugedeckt"und hernach entnommen wird).
Bitte auch solche überlagerten Lebensmittelkörner nicht wegwerfen, sondern als Kleintierfutter interessierten SchülerInnen mit nach Hause geben!
\end{abstract}

Für die Berechnung der Oberfläche der Körper ist zur das Zusammenbauen leicht zu erkennen, dass diese aus \(\mathbf{2}\) Grundflächen und dem Mantel besteht. Dieser bildet ein Rechteck mit der Länge des Umfanges und der Breite der Höhe.

Die zu bauenden Körper müssen oft nicht komplett zugeklebt werden, wenn in ihnen kleinere Körper aufbewahrt werden sollen: Die nach oben stehenden Klebefalze werden dann nur zur Versteifung nach innen geklebt, die Klebefalze am Deckel dienen zum Schließen. Da man die Körper dann immer wieder öffnen kann, kann man sie auch (teilweise) mit den 1-cm-Würfeln (\(=1 \mathrm{~cm}^{3}\)) füllen. Will man die Körper aber doch verkleben, so kann man sie zum zusätzlichen Versteifen auch mit Styropor-Verpackungsmaterial oder Luftkammerfolien ausfüllen.

Gerade das Auslegen des Bodes der Quader mit cm³ (man kann diese auch mit der Feinsäge von quadratischen 1x1-cm - Stäben aus der Holzabteilung des Baumarktes zuschneiden) ist ein wesentlicher methodischer Schritt. Die Volumenformel der verschiedenen Quader wird als Rechenvorschrift mit frei zu wählenden Variablen selbst gefunden und darf nicht vom Lehrer vorgegeben werden.
Das Berechnen der Oberflächen der verschiedenen Quader führt die SchülerInnen wieder selbst zur Formel.

Achtung: Während der Erarbeitungsphase für das Volumen darf auf keinen Fall versucht werden, auch gleich die Oberfläche der Quader zu berechnen. Ist diese Phase sicher abgeschlossen, bereitet auch das Erarbeiten der Quaderoberfläche kein Problem!

Verblüffend sind die Ergebnisse bei den Oberflächen und Rauminhalten der Würfel und Quader mit Ausschnitten. Hier ist gezeigt, dass Körper mit gleicher Oberfläche bei weitem nicht das gleiche Volumen haben müssen. (Übrigens ist es keineswegs notwendig, dass jede Formel, die an einem Körper mehrfach zur Anwendung kommt, auch jedes Mal hingeschrieben wird. Aber die Übersichtlichkeit der Arbeit muss gegeben sein!

Überlegungen: In welchem Verhältnis stehen die Oberflächen und die Volumina von Würfeln und Quadern, die eine doppelt (dreimal, viermal...) so große Seitenkante haben wie das ursprüngliche Modell?

Der schräg geschnittene Quader aus dem Arbeitsblatt G 19/20/21 ist für eine Volumensberechnung auch durch leistungsschwache Schüler meist kein Problem: Sie finden selbst die Möglichkeit der Mittelwertbildung für die Höhe (die Spitze wird abgeschnitten und heruntergeklappt) und das gibt auch den Weg für die Berechnung der Oberfläche vor. (Siehe die method.-didakt. Vorbemerkungen zum Kapitel C)

\footnotetext{
Wichtig für die Arbeit mit den Modellen sind die ,Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise „Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Grundlegendes zu den Eigenschaften von Prismen \\ (hier vor allem Quader und Würfel)}

Ein Prisma besteht aus einer Grundfläche und einer identischen (in Wahrheit aber symmetrischen = spiegelgleichen) Deckfläche und aus dem Mantel.

Bei einem polygonen (vieleckigen) Prisma ist immer das Polygon (Vieleck) die Deck- bzw. Grundfläche. Die Teilflächen des Mantels sind Rechtecke oder Quadrate. Alle Seitenflächen zusammen ergeben den Mantel.

Prismen werden nach ihrer Grundfläche (= Deckfläche) benannt:
- Ist die Grundfläche ein Dreieck, so spricht man von einem dreiseitigen Prisma.
- Ist die Grundfläche ein Viereck, so spricht man von einem vierseitigen Prisma. Auch die Würfel sind Prismen.
- Ist die Grundfläche ein Fünfeck, so spricht man von einem fünfseitiges Prisma
- Ist die Grundfläche ein Sechseck, so spricht man von einem sechsseitigen Prisma usw.

\section*{Prismen werden unterschieden, ob sie "gerade" oder "schief" sind:}
- Stehen die Seitenkanten normal auf die Grundfläche, so handelt es sich um ein gerades Prisma
- Stehen die Seitenkanten nicht normal auf die Grundfläche, so handelt es sich um ein schiefes Prisma
- Als Höhe bezeichnet man den Normalabstand der Grundfläche von der Deckfläche.

\section*{Prismen können regelmäßig oder unregelmäßig sein:}
- Ist die Grundfläche (= Deckfläche) ein regelmäßiges Vieleck, so handelt es sich auch um ein regelmäßiges Prisma
- Ist die Grundfläche (= Deckfläche) ein allgemeines Vieleck, so handelt es sich auch um ein unregelmäßiges Prisma

\section*{In diesem Kapitel: Das vierseitige Prisma}

Das allgemeine vierseitige Prisma besteht aus zwei kongruenten bzw. spiegelgleichen Vierecken (Grund- und Deckfläche). Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 4 parallele Kanten verbunden und bilden so als Seitenflächen vier Parallelogramme (natürlich sind auch Rechtecke oder Quadrate Parallelogramme).

\section*{regelmäßiges gerades vierseitiges Prisma (Ouader)}

Das gerade vierseitige Prisma besteht aus zwei kongruenten bzw. spiegelgleichen Vierecken (Grund- und Deckfläche). Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 4 parallele Kanten verbunden, die normal auf Grund- und Deckfläche stehen. Dadurch entstehen 4 unterschiedliche Rechtecke (Seitenflächen).

\section*{regelmäßiges vierseitiges rechtwinkeliges Prisma (Quader)}

Das regelmäßige vierseitige Prisma besteht aus zwei kongruenten bzw. spiegelgleichen Quadraten (Grundund Deckfläche). Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 4 parallele Kanten verbunden. Dadurch entstehen 4 gleich große Rechtecke bzw. Parallelogramme (Seitenflächen).

\section*{rechteckiges Prisma (Quader)}

Das rechteckige Prisma besteht aus zwei kongruenten bzw. spiegelgleichen Rechtecken (Grund- und Deckfläche). Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 4 parallele Kanten verbunden. Dadurch entstehen 4 gleich große Rechtecke bzw. Parallelogramme (Seitenflächen).
gleichkantiges vierseitiges rechtwinkeliges gerades Prisma (Das ist der Würfel bzw. Kubus)
Das gleichkantige vierseitige Prisma hat 12 gleich lange Kanten. Es besteht aus sechs kongruenten Quadraten (Grundfläche, Deckfläche und vier Seitenflächen). Gegenüberliegende Flächen liegen parallel zueinander.

\section*{Prisma mit trapezförmiger Grundfläche}

Ein Prisma mit trapezförmiger Grundfläche besteht aus zwei kongruenten Trapezen bzw. spiegelgleichen (Grund- und Deckfläche) und vier Rechtecken bzw. Parallelogrammen (Seitenflächen). Grund- und Deckfläche liegen parallel zueinander.

\section*{Alle vierseitigen Prismen können auch schiefe Prismen sein.}

\section*{Erreichbare Kompetenzen}

\section*{im Bereich der Quader und Würfel}
- Sicheres Beherrschen des Unterschiedes zwischen Oberfläche und Volumen
- Sinnvolle Wahl der Grundfläche
- Sicheres Beherrschen des Begriffes „Umfang des Prismas" bzw. „Mantel" und deren Berechnung
- Sicherheit im Umgang mit Lineal und Dreieck
- Die Längen-, Flächen und Raummaße anwenden
- Modelle immer zuerst darauf hin überprüfen, ob es zum Berechnen der Oberfläche und de Volumens sinnvolle „Abkürzungen" (also sinnvolle Vereinfachungen der Berechnung) gibt. Gerade diese Überle-
- gungen sind überaus wichtig zum Erlangen geometrischer mathematischer Kompetenzen. Beispiele dafür
- sind G \(1 / 2\), G 6.4 , G 6.5 sowie die verschiedenen Würfelschnitte und Quaderschnitte und die Denknüsse
- Die Modelle immer zuerst darauf hin überprüfen, ob es zum Berechnen der Oberfläche und de Volumens sinnvolle „Abkürzungen" (also sinnvolle Vereinfachungen der Berechnung) gibt. Gerade diese Überle-
- gungen sind überaus wichtig zum Erlangen geometrischer mathematischer Kompetenzen. Beispiele dafür
- sind G \(1 / 2\), G 6.4 , G 6.5 sowie die verschiedenen Würfelschnitte und Quaderschnitte und die Denknüsse
- Interessante Querverbindungen zu den thermischen Problemen der Architektur bei den Würfeln und Quadern mit Ausschnitten

\section*{Rechteckiger Quader \(4 \times 6\) x}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Rechteckige Quader 3x4x6 cm und ro. m

\section*{Quadratischer Quader \(5 \times 5\)}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Dach für rechteckige „Häy}

Natürlich können diese Ku ich einfaumermetrischem Körper gesehen werden. Es ist aber im Sinne einer ganzheitlichen und Umwelt gestalten" in der Werk um Beispiel als Querverbindung zum Bereich „Bauen Wohnen interessant, sie als Hausmodelle zu betrachten.

kleiner. Um das auszugleichen muss die Grundfläche des Hauses größer nwände größer werden müsse, ist auch der Energieverlust des Hauses
er sich haben, brauchen eine bessere Isolierung an der Zimmerdecke. Die ist ja immer oben.

\footnotetext{
* Räume. damit die

Unterstelplatz unter sich haben, brauchen einen besonders isolierten Fußboden, \(\quad \eta\) Winter nicht immer kalte Füße haben.
}

\section*{Quader mit würfelförmigem Ausschnitt}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Quader mit würfelförmigem Ausschnitt

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Quader mit quaderförmigem Ausschnitt}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Dach für quadratische}

Zuerst die Giebelwände an den Boden kleben, dann die Dachvorsprünge zum Versteifen auf der Unterseite des Dache ankleben und zuletzt erst das Dach setzen.

Dieses Dach passt auf folgende \(\mathbf{M}\) G 2.5 / G 2.6 / G 2.7 / G 3.3 / G 3.4

Natürlich können diese Ku ich einfat_ocometrischem Körper gesehen werden. Es ist aber im Sinne einer ganzheitlichen —um Beispiel als Querverbindung zum Bereich „Bauen Wohnen und Umwelt gestalten" in der Werk interessant, sie als Hausmodelle zu betrachten.

kleiner. Um das auszugleichen muss die Grundfläche des Hauses größer nwände größer werden müsse, ist auch der Energieverlust des Hauses
er sich haben, brauchen eine bessere Isolierung an der Zimmerdecke. Die ist ja immer oben.

\footnotetext{
* Räume. damit die

Unterstellplatz unter sich haben, brauchen einen besonders isolierten Fußboden, ' \(n\) Winter nicht immer kalte Füße haben.
}

\section*{Dach für quadratische}

Zuerst die Giebelwände an den Boden kleben, dann die Dachvorsprünge zum Versteifen auf der Unterseite des Dache ankleben und zuletzt erst das Dach? setzen.

Dieses Dach passt auf folgende M G 2.5 / G 2.6 / G 2. \(\mathbf{7}\) / G 3.3 / G 3.4

Natürlich können diese ko ich einfat_ometrischem Körper gesehen werden. Es ist aber im Sinne einer ganzheitlichen und Umwelt gestalten" in der Werk m Beispiel als Querverbindung zum Bereich „Bauen Wohnen interessant, sie als Hausmodelle zu betrachten.

kleiner. Um das auszugleichen muss die Grundfläche des Hauses größer
nwände größer werden müsse, ist auch der Energieverlust des Hauses
er sich haben, brauchen eine bessere Isolierung an der Zimmerdecke. Die ist ja immer oben.

\footnotetext{
* Räume. damit die

Unterstellplatz unter sich haben, brauchen einen besonders isolierten Fußboden, ' \(n\) Winter nicht immer kalte Füße haben.
}

\section*{Würfel mit würfelförmigem Ausschnitt}

Bodem

\section*{Würfel mit} würfelförmigem Ausschnitt

Boden

\section*{Quader mit 2 Ausschnitten (1)}

Quader mit 2 Ausschnitten (1)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Quader mit 2 Ausschnitten (2)}

Quader mit

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Würfel mit 2 Ausschnitten}

Der Mantel wird entlang der strichlie inien eingeschlitzt . diesem Bereich na innen \(g\) sind d böden Wenn du vollständige

\section*{Quader mit 4 Ausschnitten}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Denknüsse mit Würfeln (1)

b) bei diesem Würfel hier wurde ein Stück herausgeschnitten. Berechne nun die Oberfläche und das Volumen und vergleiche mit den Ergebnissen des kompletten Würfels. Was fällt auf? Inliche Denknüsse findest du unter www.mathematikmodelle.net im Kapitel \(\mathbf{G}\) bei den Modellen G 2.1 bis G 5.2

\section*{Quader 4x6x8 cm schräg gesch}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Offener Behälter für Quader mit K nitt}

Die inneren Klebefalze dieses Körpers werden an den Boden bzw. an die Seitenwände geklebt. So haben die Quaderteile hier genug Platz. Die oberen Klebefalze des Quaders werden zur Randverstärkung verwendet und nach innen geklebt. Die Klebefalze des Deckels werden zwischen den

\section*{Offener Behälter für Quader mit K nitt}

Die inneren Klebefalze dieses Körpers werden an den Boden bzw. an die Seitenwände geklebt. So haben die Quaderteile hier genug Platz. Die oberen Klebefalze des Quaders werden zur Randverstärkung verwendet und nach innen geklebt. Die Klebefalze des Deckels werden zwischen den Quaderteil und die Wänden gesteckt.

\section*{Quadratischer Quader, rechtwinkelig di ona}

Verkleinerter
Grund- und Aufriss
für den Zusammenbau

Um einen der schräg geschnittenen Quader als eigenes Modell zu belassen, muss er oben mit dieser rhombusformigen

Fläche abgeschlossen werden.

\footnotetext{
Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:
}

\section*{Quadratischer Quader, rechtwinkelig di ona}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Würfel mit Sechseck als Schnittfläche}

\section*{Karton mit ausgeschnittenem S (Se} zum „Umhängen" für die Schnittflä dey
 \\ \title{
Karton mit ausgeschnittenem \(S\) ase \\ \title{
Karton mit ausgeschnittenem \(S\) ase zum „Umhängen" für die Schnittflä dey
}

\section*{Quader mit Sechseck als Schni}

\title{
Quader mit Sechseck als Schni \\ Diese Teile auf roten Karton kopierer
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
Methodisch - didaktische Vorbemerkungen zu
}

\author{
H) Zusammengesetzte Körper \\ (= zusammengesetzte Prismen)
}

Eine ganz wichtige Überlegung für alle diese Körper ist, wie man diesen Körper hinlegt und anschaut, damit er mathematisch berechenbar wird: Welche der oft vielen Flächen nimmt man als Grundfläche?

Der methodische Zugang für die Volumensberechnung führt hier
a) vom Abzählen der \(\mathrm{cm}^{2}\) der Bodenplatte (auf jedem \(\mathrm{cm}^{2}\) hat ein \(1-\mathrm{cm}^{3}\)-Würfel Platz) zum
b) sinnvollen Entdecken von Teilflächen des Bodens und deren Addition (oder fehlenden Teilflächen und deren Subtraktion) zur ganzen Bodenplatte
c) Als standardisierte Mantelhöhe haben sich bei den meisten dieser Modelle 3 cm bewährt. Es spricht natürlich bei Eigenkonstruktionen nichts gegen eine andere Höhe, nur sollte das gesamte Körpernetz möglichst auf einem Blatt als Kopiervorlage Platz haben.

Gerade das Hantieren mit der Mantelfläche ist für die Schüler so einprägsam, dass hier sofort die Formel „Fläche des Mantels = Umfang des Körpers (so lang ist ja der Mantel) mal seine Höhe". Somit erarbeiten sich die Schüler auch die Oberflächenformel mit „Oberfläche = 2 Grundflächen plus der Mantel" ganz leicht. Es gilt nur mehr, diese Erkenntnisse mittels Variabler in das Kleid einer Formel zu bringen.

Auch die allgemeine Volumensformel „V=G x h " ist mit dem Hinweis auf das Füllen mit 3 Lagen von \(\mathbf{c m}^{3}\)-Würfeln herleitbar.

Gerade die Methode des Abschneidens und Umlagerns von Teilen kann in der Geometrie immer wieder verwendet werden. Das gilt für die Berechnung von Körperoberflächen ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den Schülern analoge Vorgangsweisen bewusst zu machen.

\footnotetext{
Wichtig für die Arbeit mit den Modellen sind die „Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise ,ZZur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.
}

\section*{Erreichbare Kompetenzen im Bereich der zusammengesetzten Körper (Prismen)}
- Sicheres Beherrschen des Unterschiedes zwischen Oberfläche und Volumen
- Sicheres Entscheiden, welche Körper hier Teile (oder fehlende Teile) der Modelle sind
- Sinnvolle Wahl der Grundfläche
- Sicheres Beherrschen des Begriffes „Umfang des Prismas" bzw. „Mantel" und deren Berechnung
- Sicherheit im Umgang mit Lineal und Dreieck
- Die Längen-, Flächen und Raummmaße sicher anwenden können
- Die Modelle immer zuerst darauf hin überprüfen, ob es zum Berechnen der Oberfläche und des Volumens sinnvolle „Abkürzungen" (also sinnvolle Vereinfachungen der Berechnung) gibt. Gerade diese Überlegungen sind überaus wichtig zum Erlangen geometrischer mathematischer Kompetenzen

\section*{Zusammengesetzter Körp}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Zusammengesetzter Körp

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

\section*{Zusammengesetzter Körp}

\section*{Zusammengesetzter Körp}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Zusammengesetzter Körp}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Zusammengesetzter Körp}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Zusammengesetzter Körp}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Zusammengesetzter Körp}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Zusammengesetzter Körp}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Zusammengesetzter Körp}

\section*{Zusammengesetzter Körp}

\section*{Zusammengesetzter Körp}

Achtung: Miss die Länge des Umfanges. Die schräg angeschnittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft länger oder kürzer als \(1 \mathbf{c m}\) !

\section*{Zusammengesetzter Körp}

Achtung: Miss die Länge des Umfanges. Die schräg angeschnittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft länger oder kürzer als \(1 \mathbf{c m}\) !

Mantelflächen

\title{
- Mestlig
}

Achtung: Miss die Länge des Umfanges. Die schräg angeschnittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnitffläche oft länger oder kürzer als 1 cm !

\section*{Zusammengesetzter Körp}

Boden- und Deckfläche
Mantelflächen
 sind nämlich an der Schnittfläche oft länger oder kürzer als 1 cm !

\section*{Zusammengesetzter Körp}

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{I) Prismen über Dreiecks- und Vierecksflächen}

Eine ganz wichtige Überlegung für alle diese Körper ist, wie man diesen Körper hinlegt und anschaut, damit er mathematisch berechenbar wird: Welche der oft vielen Flächen nimmt man als Grundfläche?

Der methodische Zugang für die Volumensberechnung führt hier
a) vom Abzählen der \(\mathrm{cm}^{2}\) der Bodenplatte (auf jedem \(\mathrm{cm}^{2}\) hat ein \(1-\mathrm{cm}^{3}\)-Würfel Platz) zum
b) sinnvollen Entdecken von Teilflächen des Bodens und deren Addition (oder fehlenden Teilflächen und deren Subtraktion) zur ganzen Bodenplatte
c) Als standardisierte Mantelhöhe haben sich bei den meisten dieser Modelle 3 cm bewährt. Es spricht natürlich bei Eigenkonstruktionen nichts gegen eine andere Höhe, nur sollte das gesamte Körpernetz möglichst auf einem Blatt als Kopiervorlage Platz haben.

Gerade das Hantieren mit der Mantelfläche ist für die Schüler so einprägsam, dass hier sofort die Formel „Fläche des Mantels = Umfang des Körpers (so lang ist ja der Mantel) mal seine Höhe". Somit erarbeiten sich die Schüler auch die Oberflächenformel mit „Oberfläche = 2 Grundflächen plus der Mantel" ganz leicht. Es gilt nur mehr, diese Erkenntnisse mittels Variabler in das Kleid einer Formel zu bringen.

Auch die allgemeine Volumensformel „V=G x h "ist mit dem Hinweis auf das Füllen mit 3 Lagen von \(\mathrm{cm}^{3}\)-Würfeln herleitbar.

Gerade die Methode des Abschneidens und Umlagerns von Teilen kann in der Geometrie immer wieder verwendet werden. Das gilt für die Berechnung von Körperoberflächen ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den Schülern analoge Vorgangsweisen bewusst zu machen.

Wichtig für die Arbeit mit den Modellen sind die ,Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise „Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.

\section*{Eigenschaften von Prismen}

Ein Prisma besteht aus einer Grundfläche und einer identischen (in Wahrheit aber symmetrischen) Deckfläche und aus dem Mantel.

Bei einem polygonen (vieleckigen) Prisma ist immer das Polygon (Vieleck) die Deck- bzw. Grundfläche. Die Teilflächen des Mantels sind Rechtecke oder Quadrate. Alle Seitenflächen zusammen ergeben den Mantel.

Prismen werden nach ihrer Grundfläche (= Deckfläche) benannt:
- Ist die Grundfläche ein Dreieck, so spricht man von einem dreiseitigen Prisma.
- Ist die Grundfläche ein Viereck, so spricht man von einem vierseitigen Prisma. Auch die Würfel gehören zu den Prismen.
- Ist die Grundfläche ein Fünfeck, so spricht man von einem fünfseitiges Prisma
- Ist die Grundfläche ein Sechseck, so spricht man von einem sechsseitigen Prisma usw.

Prismen werden auch unterschieden, ob sie "gerade" oder "schief" sind:
- Stehen die Seitenkanten normal auf die Grundfläche, so handelt es sich um ein gerades Prisma
- Stehen die Seitenkanten nicht normal auf die Grundfläche, so handelt es sich um ein schiefes Prisma
- Als Höhe bezeichnet man den Normalabstand der Grundfläche von der Deckfläche.

\section*{Prismen können regelmäßig oder unregelmäßig sein:}
- Ist die Grundfläche (= Deckfläche) ein regelmäßiges Vieleck, so handelt es sich auch um ein regelmäßiges Prisma
- Ist die Grundfläche (= Deckfläche) ein allgemeines Vieleck, so handelt es sich auch um ein unregelmäßiges Prisma

\section*{Dreiseitiges Prisma}

Das allgemeine dreiseitige Prisma besteht aus zwei kongruenten bzw. spiegelgleichen Dreiecken (Deck- und Grundfläche). Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 3 parallele Kanten verbunden und bilden so drei Parallelogramme (natürlich sind auch Rechtecke oder Quadrate Parallelogramme).

\section*{gerades dreiseitiges Prisma}

Das gerade dreiseitige Prisma besteht aus zwei kongruenten Dreiecken (Deck- und Grundfläche). Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 3 parallele Kanten verbunden, die normal auf Grund- und Deckfläche stehen. Dadurch entstehen 3 unterschiedliche Rechtecke.

\section*{gerades regelmäßiges dreiseitiges Prisma}

Das regelmäßige dreiseitige Prisma besteht aus zwei kongruenten gleichseitigen Dreiecken. Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 3 parallele Kanten verbunden. Dadurch entstehen 3 gleich große Rechtecke oder Quadrate bzw. Parallelogramme.

\section*{gerades gleichkantiges dreiseitiges Prisma}

Das gleichkantige dreiseitige Prisma hat 9 gleich lange Kanten, der Mantel besteht aus 3 Quadraten.

\section*{Alle dreiseitigen Prismen können auch schiefe Prismen sein.}

\section*{Erreichbare Kompetenzen}

\section*{im Bereich der Prismen über Vierecken und Dreiecken}
- Zuerst Dreiecke und Vierecke durch viel praktisches Tun (Schneiden und wieder zusammenbauen...) in Rechtecke verwandeln können und damit leichter berechenbar machen. Aus diesem Handeln die Dreiecks- und Vierecks-Flächenformeln herleiten und dann das Volumen berechnen können
- Bei den Prismen über Dreiecken und Vierecken sinnvolles Wählen der Grundfläche, damit das Berechnen des Volumens möglich wird. (Auch der Maurer vermauert den Stein nicht so, wie er ihn in die Hand bekommt, sondern er dreht ihn sich zurecht!)
- Zuerst Dreiecke und Vierecke durch viel praktisches Tun (Schneiden und wieder zusammenbauen...) in Rechtecke verwandeln können und damit leichter berechenbar machen. Aus diesem Handeln die Dreiecks- und Vierecks-Flächenformeln herleiten und dann das Volumen berechnen können
- Sicheres Beherrschen des Unterschiedes zwischen Längenmaßen, Flächenmaßen und Raummaßen
- Sicherheit im Umgang mit Lineal, Dreieck, Rollmaß, „Zoll"stab....
- Das für die Maßumwandlungen oft benötigte Längenmaße „,dm" gerade zum Berechnen des Volumens und dann der Masse sicher beherrschen

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
I 1.2.1 \\ Gleichschenkelig spitzwinkeliges
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Gleichschenkelig spitzwinkeliges}

\section*{Gleichseitiges Prisma 1}

chnittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft or oder kürzer als 1 cm ! Du musst wirklich messen!

\section*{Gleichseitiges Prisma 1}

\section*{Gleichseitiges Prisma 2}

\section*{Gleichseitiges Prisma 2}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Gleichseitiges Prisma 2}

Ergänze bei Grund- und Deckfläche und beim Mantel die fehlenden Kleb

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Rechtwinkelig ungleichseitiges}

Achtung: Für die Berechnung der Oberfläche brauchst du die Länge des Umfanges. Pass auf, die schräg angeschnittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft länger oder kürzer als 1 cm ! Du musst wirklich messen!

\section*{Prisma über Deltoid}

Miss selbst die benötigten Mantelflächen ab zeichne dann rechts den benötigten Man'

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Achtung: Für die Berechnung der Oberfläche brauchst du die Länge des Umfanges. Pass auf, die schräg angeschnittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft länger oder kürzer als 1 cm! Du musst wirklich messen!

Achte beim Zusammenbauen, dass die Kanten der \(\mathbf{c m}^{\mathbf{3}}\) am Mantel passend weitergehen!

\section*{Prisma über einer Raute}

Boden- und Deckfläche
Mantelflächen
\(\square\)

Achtung: Für die Berechnung der Oberfläche brauchst du die Länge des Umfanges. Pass auf, die schräg angeschnittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft länger oder kürzer als 1 cm! Du musst wirklich messen!

Achte beim Zusammenbauen, dass die Kanten der \(\mathbf{c m}^{\mathbf{3}}\) am Mantel passend weitergehen!

\section*{Prisma über gleichschenkeligem}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Prisma über gleichschenkeligem}

Ac, Ing: Für die Berechnung der Oberfläche brauchst du die inge des Umfanges. Pass auf, schräg angeschnittenen \(\mathrm{cm}^{3}\) fld nämlich an der Schnittfläche oft länger oder kürzer als 1 cm ! Du musst wirklich messen!

Boden- und Deckfläche

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Prisma über Parallelogram}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Prisma über Parallelogram}

\section*{Prisma über Parallelogram}

Boden- und Deckfläche

Boden- und Deckfläche

\section*{Prisma über ungleichschenkeligem ars \\ Boden- und Deckfläche \\ Mantelflächen}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{J) Besondere Prismen und Antiprismen}

Eine ganz wichtige Überlegung für alle diese Körper ist, wie man diesen Körper hinlegt und anschaut, damit er mathematisch berechenbar wird: Welche der oft vielen Flächen nimmt man als Grundfläche?

Der methodische Zugang für die Volumensberechnung führt hier
a) vom Abzählen der \(\mathrm{cm}^{2}\) der Bodenplatte (auf jedem \(\mathrm{cm}^{2}\) hat ein \(1-\mathrm{cm}^{3}\)-Würfel Platz) zum
b) sinnvollen Entdecken von Teilflächen des Bodens und deren Addition (oder fehlenden Teilflächen und deren Subtraktion) zur ganzen Bodenplatte
c) Als standardisierte Mantelhöhe haben sich bei den meisten dieser Modelle 3 cm bewährt. Es spricht natürlich bei Eigenkonstruktionen nichts gegen eine andere Höhe, nur sollte das gesamte Körpernetz möglichst auf einem Blatt als Kopiervorlage Platz haben.

Gerade das Hantieren mit der Mantelfläche ist für die Schüler so einprägsam, dass hier sofort die Formel „Fläche des Mantels = Umfang des Körpers (so lang ist ja der Mantel) mal seine Höhe". Somit erarbeiten sich die Schüler auch die Oberflächenformel mit „Oberfläche = 2 Grundflächen plus der Mantel" ganz leicht. Es gilt nur mehr, diese Erkenntnisse mittels Variabler in das Kleid einer Formel zu bringen.

Auch die allgemeine Volumensformel „V=G x h"ist mit dem Hinweis auf das Füllen mit 3 Lagen von \(\mathbf{c m}^{3}\)-Würfeln herleitbar.
Für die Berechnung des Volumens schiefer Körper gilt das Prinzip des Cavalieri:
Das Prinzip von Cavalieri besagt: Zwei Körper besitzen dasselbe Volumen, wenn alle ihre Schnittflächen in Ebenen parallel zu einer Grundebene in gleichen Höhen den gleichen Flächeninhalt haben.

Gerade die Methode des Abschneidens und Umlagerns von Teilen kann in der Geometrie immer wieder verwendet werden. Das gilt für die Berechnung von Körperoberflächen ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den Schülern analoge Vorgangsweisen bewusst zu machen.

\footnotetext{
Wichtig für die Arbeit mit den Modellen sind die ,Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise „Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.
}

\section*{Eigenschaften von Prismen}

Ein Prisma besteht aus einer Grundfläche und einer identischen (in Wahrheit aber symmetrischen) Deckfläche und aus dem Mantel.
Bei einem polygonen (vieleckigen) Prisma ist immer das Polygon (Vieleck) die Deck- bzw. Grundfläche. Die Teilflächen des Mantels sind Rechtecke oder Quadrate. Alle Seitenflächen zusammen ergeben den Mantel.

Prismen werden nach ihrer Grundfläche (= Deckfläche) benannt:
- Ist die Grundfläche ein Dreieck, so spricht man von einem dreiseitigen Prisma.
- Ist die Grundfläche ein Viereck, so spricht man von einem vierseitigen Prisma. Auch die Würfel gehören zu den Prismen.
- Ist die Grundfläche ein Fünfeck, so spricht man von einem fünfseitiges Prisma
- Ist die Grundfläche ein Sechseck, so spricht man von einem sechsseitigen Prisma usw.

\section*{Prismen werden auch unterschieden, ob sie "gerade" oder "schief" sind:}
- Stehen die Seitenkanten normal auf die Grundfläche, so handelt es sich um ein gerades Prisma
- Stehen die Seitenkanten nicht normal auf die Grundfläche, so handelt es sich um ein schiefes Prisma
- Als Höhe bezeichnet man den Normalabstand der Grundfläche von der Deckfläche.

\section*{Prismen können regelmäßig oder unregelmäßig sein:}
- Ist die Grundfläche (= Deckfläche) ein regelmäßiges Vieleck, so handelt es sich auch um ein regelmäßiges Prisma
- Ist die Grundfläche (= Deckfläche) ein allgemeines Vieleck, so handelt es sich auch um ein unregelmäßiges Prisma

\section*{Dreiseitiges Prisma}

Das allgemeine dreiseitige Prisma besteht aus zwei kongruenten bzw. spiegelgleichen Dreiecken (Deck- und Grundfläche). Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 3 parallele Kanten verbunden und bilden so drei Parallelogramme (natürlich sind auch Rechtecke oder Quadrate Parallelogramme).

\section*{gerades dreiseitiges Prisma}

Das gerade dreiseitige Prisma besteht aus zwei kongruenten Dreiecken (Deck- und Grundfläche). Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 3 parallele Kanten verbunden, die normal auf Grund- und Deckfläche stehen. Dadurch entstehen 3 unterschiedliche Rechtecke.

\section*{gerades regelmäßiges dreiseitiges Prisma}

Das regelmäßige dreiseitige Prisma besteht aus zwei kongruenten gleichseitigen Dreiecken. Diese liegen parallel zueinander. Ihre Eckpunkte sind durch 3 parallele Kanten verbunden. Dadurch entstehen 3 gleich große Rechtecke oder Quadrate bzw. Parallelogramme.

\section*{gerades gleichkantiges dreiseitiges Prisma}

Das gleichkantige dreiseitige Prisma hat 9 gleich lange Kanten, der Mantel besteht aus 3 Quadraten.

\section*{Alle dreiseitigen Prismen können auch schiefe Prismen sein.}

\section*{Erreichbare Kompetenzen}

\section*{im Bereich der besonderen Prismen und Antiprismen}
- Sicheres Beherrschen der Flächenmaße
- Sicheres Beherrschen des Unterschiedes zwischen Längenmaßen und Flächenmaßen
- Sicherung der Begriffe Mantel, Deckfläche, Grundfläche
- Erkennen, dass Deck- und Grundfläche zueinand größengleich, aber in der Form nur spiegelgleich sind
- Volumensverhältnisse von Quaderstumpf zu Quaderspitze begründen können (Strahlensatz)
- Berechnungswege für verschobene Prismen finden können
- Berechnungswege für zusammengesetzte Prismen finden können
- Gedrehte Prismen und auch Antiprismen kennenlernen und Wege zu ihrer Berechnung finden
- Verschobene und schräg geschnittene Prismen berechnen können

\section*{Prisma über 3 Teilflächen}

\section*{Prisma über 3 Teilflächen}

\section*{Prisma über unregelmäßigem Viereck}

Achtung: Miss die Länge des Umfanges. Die schräg angeschnittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft länger oder kürzer als \(\mathbf{1} \mathbf{c m}\) !

\section*{Prisma über unregelmäßigem Viereck}

Achtung: Miss die Länge des Umfanges. Die schräg angeschnittenen \(\mathrm{cm}^{\mathbf{3}}\) sind nämlich an der Schnittfläche oft länger oder kürzer als 1 cm !

\section*{Fünfeckprisma aus Trapez und Dreieck}

- Wenn du die Linien für die \(\mathrm{cm}^{3}\) einzeichnen willst, pass auf: Die schräg angescirratteren \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft länger oder kürzer als \(\mathbf{1} \mathbf{c m}\) !

\section*{Fünfeckprisma aus Trapez und Dreieck}

Wenn du die Linien für die \(\mathrm{cm}^{3}\) einzeichnen willst, pass auf: Die schräg angescirr texen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft länger oder kürzer als 1 cm !

\section*{Dreiecksprisma mit abgeschnittener Spitze 1}

\section*{Dreiecksprisma mit abgeschnittener Spitze 1}

\section*{Dreiecksprisma mit abgeschnittener Spitze 2}

\section*{Dreiecksprisma mit abgeschnittener Spitze 2}

\section*{Dreiecksprisma}

Achtung: Miss für die Berechnung der Oberfläche

\section*{Dreiecksprisma}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Einem Dreiecksprisma wurde die Spitze abgeschnitten. Das untere Rest hat nur mehr 1/4 der ursprünglichen Höhe.

Berechne das Volumen des ganzen Dreieckprismas und das Volumen der abgetrennten Spitze. In welchem GröRenverhältnis zum ganzen Prisma steht die abgetrennte Spitze?

\section*{Verschobenes Dreiecksprisma}

Achtung. Misc 7 Ir die Berechnung der Oberfläche vurgerraut Lallge des Umfanges. Die schräg angeSor ittenen \(\mathrm{cm}^{3}\) sind nämlich an der Schnittfläche oft lang. der kürzer als 1 cm !

\section*{Verschobenes Dreiecksprisma}

oft lang. der kürzer als 1 cm !

Dreiecksprisma, das an der Spitze dicker ist

Aus. Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Dreiecksprisma, das an der Spitze dicker ist

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Dreiecksprisma, das an der Basis dicker ist}

\section*{Dreiecksprisma, das an der Basis dicker ist}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Großes regelmäßiges sechseckiges Prisma}

\section*{Großes regelmäßiges sechseckiges Prisma}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Regelmäßiges sechseckiges Prisma 1}

\section*{Regelmäßiges sechseckiges Prisma 1}

\section*{Regelmäßiges sechseckiges Prisma 2}

\section*{Regelmäßiges sechseckiges Prisma 2}

\section*{Großes regelmäßiges achteckiges Prisma}

\section*{Großes regelmäßiges achteckiges Prisma}

\section*{Regelmäßiges achteckiges Prisma 1}

\section*{Regelmäßiges achteckiges Prisma 1}

\section*{Regelmäßiges achteckiges Prisma 2}

\section*{Regelmäßiges achteckiges Prisma 2}

Boden- und Deckfläche

Für die Berechnungen der Oberfläche des Volumens kannst du das ego rofe Achteck als Summe on je eils 2 Trapezen und einer Rechteck sehen oder von 8 gleichschenkeqen Dreiecken.

\section*{Regelmäßiges achteckiges Prisma 3}

\section*{Regelmäßiges achteckiges Prisma 3}

Boden- und Deckfläche

Für die Berechnungen der Oberfläche und des Volumens kannst du das regelmäßige Achteck als Summe von jeweils 2 Trapezen und einem Rechteck sehen oder als Summe von 8 gleichschenkeligen Dreiecken.

\section*{Zusammengesetzter Quader mit Bohrung}

\section*{Zusammengesetzter Quader mit Bohrung}

\author{
J 5.2.1
}

\section*{Trapezförmiger Block mit waagrechter Bohrung (1)}

Nach dem Ausschneide der Teile schneide die Klebefalze für die Bohrung ein. Dann klebe bei diesem dell zuerst einmal die Wände am Boden fest. Nun mach aus einem Stück Kopic karton eine Rolle und steck diese durch die Löcher. Mit einem Bleistif/kannst du/außen am „Bohrloch" die Form abnehmen. Markiere dabei, welcher Pon des „B ohres" am Modell oben war. Wenn du die Rolle wieder herausnimmst, siehsine Form des Bohrlochprofils genau. Mach das gleich mit noch einem Stück Karton. Heb dir nun eine Rolle (wieder auseinandergerollt) als Muster exłta auf. Du kannst nun den zweiten Karton in der gefundenen Form zuschneide \(\quad\) d die Rolle passend einkleben. Jetzt erst wird die Deckfläche angeklebt
Überlege \(D r\), wly man das Volumen des Bohrlochs berechnen kann. Es ist gar nicht so schwer we es aussieht. Sogar die Fläche der Bohrlochwand kann man ziemlich lo \(\sim\) men.

\section*{Trapezförmiger Block mit waagrechter Bohrung (1)}

Nach dem Ausschneid der Teile schneide die Klebefalze für die Bohrung ein. Dann klebe bei diesem odell zuerst einmal die Wände am Boden fest. Nun mach aus einem Stück Kopic karton eine Rolle und steck diese durch die Löcher. Mit einem Bleistif/kannst du hußen am „Bohrloch" die Form abnehmen. Markiere dabei, welcher Pandes "Bhres" am Modell oben war. Wenn du die Rolle wieder herausnimmst, siehsi ne Form des Bohrlochprofils genau. Mach das gleich mit noch einem Stück Karton. Heb dir nun eine Rolle (wieder auseinandergerollt) als Muster exłta auf. Du kannst nun den zweiten Karton in der gefundenen Form zuschneide \(\quad\) nd die Rolle passend einkleben. Jetzt erst wird die Deckfläche angeklebt
Überlege \(D r\), wly man das Volumen des Bohrlochs berechnen kann. Es ist gar nicht so schwer we es aussieht. Sogar die Fläche der Bohrlochwand kann man ziemlich

\section*{Trapezförmiger Block mit waagrechter Bohrung (2)}

\section*{Trapezförmiger Block mit waagrechter Bohrung (2)}

\section*{Sechseckiges Prisma, \(30^{\circ}\) gedreht}

Die Seitenwände werden an den Strichlinien génickt.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Regelmäßiges quadratisches Antiprisma}

\title{
Regelmäßiges quadratisches Antiprisma
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

\section*{Regelmäßiges quadratisches Antiprisma}

\section*{Regelmäßiges quadratisches Antiprisma}

\section*{Allgemeines quadratisches Antiprisma}

\section*{Allgemeines quadratisches Antiprisma}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

\section*{Allgemeines quadratisches Antiprisma}

\section*{Allgemeines quadratisches Antiprisma}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich @aon.at) A-8583 Edelschrott

\section*{Regelmäßiges sechseckiges Antiprisma}

\section*{Regelmäßiges sechseckiges Antiprisma}

Aus: ceometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Regelmäßiges sechseckiges Antiprisma}

\section*{Regelmäßiges sechseckiges Antiprisma}

\section*{Allgemeines sechseckiges Antiprisma}

\section*{Allgemeines sechseckiges Antiprisma}

Aus: ceometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Regelmäßiges achteckiges Antiprisma}

Regelmäßiges achteckiges Antiprisma

\section*{Allgemeines achteckiges Antiprisma}

Aus: ceometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Allgemeines achteckiges Antiprisma}

\section*{Allgemeines} quadratisches Antiprisma

J 6.7.1

\section*{Quadratisches Prisma, seitlich verschoben}

\section*{Quadratisches Prisma, seitlich verschoben}

\section*{Rechteckiges Prisma, seitlich verschoben}

\section*{Rechteckiges Prisma, seitlich verschoben}

\section*{Quadratisches Prisma, diagonal schräg geschnitten}

\section*{Quadratisches Prisma, diagonal schräg geschnitten}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Quadratisches Prisma, diagonal verschoben}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

J 6.8.2

\section*{Quadratisches Prisma, diagonal verschoben}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{K) Pythagoräischer Lehrsatz}

Den Pythagoräischen Lehrsatz mit dem ganzzahligen Dreiecksseitenverhältnis 3: 4: 5 vom Lehrer serviert zu bekommen ist eine Möglichkeit, sich mit ihm auseinander zu setzen und ihn einfach zu akzeptieren. Schöner sind da schon die verschiedenen Möglichkeiten, ihn selbst durch eigenes Handeln auch bewiesen zu sehen. Die hier vorliegenden Beispiele für Schneidebeweise beginnen gleich einmal mit dem viel anschaulicheren Beispiel des gleichschenkeligen rechtwinkeligen Dreieckes.

Bevor jeweils das \(\mathbf{a}^{2}\) und das \(\mathbf{b}^{2}\) vom rechtwinkeligen Dreieck und dem an diesem belassenen \(\mathbf{c}^{\mathbf{2}}\) getrennt werden wird diese Gruppierung mit Hilfe von Bleistiftpunkten an allen Ecken dieser Figur in das Heft übertragen und dann auch so nachgezeichnet. Dann werden \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) abgetrennt und mit MitschülerInnen gegen solche in anderer Farbe getauscht. Dann gilt es zu überlegen, wie man \(\mathbf{a}^{2}\) und \(b^{2}\) zerschneiden muss, um mit den Teilen das c-Quadrat komplett zudecken zu können. Gibt es nicht sogar eine Möglichkeit, dass eines der beiden Quadrate nicht zerschnitten werden muss? Wenn es mit dem Zudecken des \(\mathbf{c}^{\mathbf{2}}\) geklappt hat, werden die Teile sorgfältig auf \(\mathbf{c}^{\mathbf{2}}\) aufgeklebt und der fertige Schneidebeweis wird in die Zeichnung eingeklebt.

\begin{abstract}
Abgesehen von den vorgegebenen Beispielen lassen sich dank des Lehrsatzes von Thales ganz leicht unendlich viele rechtwinkelige Dreiecke am Halbkreis und somit ebenso viele Möglichkeiten für Schneidebeweise von den SchülerInnen selbst finden.
(Die Beweise für den Höhensatz und den Kathetensatz folgen im Teil 2 von „Geometrische Flächen und Körper zum Be - greifen"
\end{abstract}

Für besonders interessierte KollegInnen so etwas wie eine Pflichtlektüre:
Lernzirkel: Der Satz des Pythagoras
Autor: Hans J. Schmidt
Verlag an der Ruhr
Postfach 102251, D-45422 Mühlheim an der Ruhr
ISBN 3-86072-425-8
Auch hier gilt, dass die Methode des Abschneidens und Umlagerns von Teilen in der Geometrie immer wieder verwendet werden kann. Das gilt für den Pythagoräischen Lehrsatz genau so wie für die Berechnung von Körperoberflächen und ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den Schülern analoge Vorgangsweisen bewusst zu machen.

\section*{Erreichbare Kompetenzen}

\section*{im Bereich des Pythagoräischen Lehrsatzes}
- Einprägen der verschiedenen Möglichkeiten für das Legen der Flächenteile von \(\mathrm{a}^{2}\) und \(b^{2}\) auf \(c^{2}\) und damit zeigen können, das die Summe der Flächen der Kathetenquadrate gleich groß ist wie das Hypothenusenquadrat
- Erkennen, dass sich dreieckige Flächenteile durch das Vertauschen von Vorderseite und Rückseite im Drehungssinn ändern und beim Einfügen nicht mehr passen
- Sicheres Beherrschen des Pythagoräischen Lehrsatzes

\section*{2 Schneidebeweise für den Pythag}

\section*{2 Schneidebeweise für den Pythag fic tz}

\section*{Pythag. Lehrsatz im Schneidebe}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(b^{2}\) mit einem anderen Schüler gegen Quadrate in © selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) \({ }^{-}\)achneide, ihnen das \(\mathbf{c}^{2}\) genau zukleben kannst!Nun klebe den Flä́ Ceweis (du lita -n Farbe. Finde damit du mit \(\left.a^{2}+b^{2}=c^{2}\right)\) in das Heft, zeichne aber dazu, wo \(a^{2}\) und \(b^{2}\) er war Teile dit b, bass

\section*{Pythag. Lehrsatz im Schneidebe}

Lass beim Ausschneiden das \(c^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(b^{2}\) mit einem anderen Schüler gegen Quadrate inc selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) ihnen das \(c^{2}\) genau zukleben kannst! Nun klebe den Fläc

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(a^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadraté ihnen das \(c^{2}\) genau zukleben kannst! Nun klebe den Fläc beweis (au \(\mathbf{a}^{2}+\mathbf{b}^{2}=\mathbf{c}^{2}\)) in das Heft, zeichne aber dazu, wo \(a^{2}\) und rher waren. Io esen, dass also gut ein!

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck
Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadrate
als ein
selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) zerschne, ihnen das \(c^{2}\) genau zukleben kannst! Nun klebe den Fläc beweis (du. \(\mathbf{a}^{2}+\mathbf{b}^{2}=\mathbf{c}^{2}\)) in das Heft, zeichne aber dazu, wo \(\mathbf{a}^{2}\) und also gut ein!

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadraté selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) zerschne,
als ein n Farbe. Finde ihnen das \(c^{2}\) genau zukleben kannst! Nun klebe den Fläc beweis (atu \(a^{2}+b^{2}={ }^{2}\)) wiesen, dass \(\underline{a}^{2}+\mathbf{b}^{2}=\mathbf{c}^{2}\)) in das Heft, zeichne aber dazu, wo \(a^{2}\) und also gut ein!

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck
Tausche \(a^{2}\) und \(b^{2}\) mit einem anderen Schüler gegen Quadrate selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) zerschne. ihnen das \(c^{2}\) genau zukleben kannst! Nun klebe den Fläc beweis (au. \(\qquad\) I Farbe. Finde 4, damit du mit viesen, dass \(\mathbf{a}^{2}+b^{2}=\mathbf{c}^{2}\)) in das Heft, zeichne aber dazu, wo \(a^{2}\) und also gut ein!

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadrate selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) zerschit ihnen das \(\mathbf{c}^{2}\) genau zukleben kannst! Nun klebe den Fläc 'heweis (an \(\underline{a}^{2}+b^{2}=\mathbf{c}^{2}\)) in das Heft, zeichne aber dazu, wo \(a^{2}\) und \(b^{2} y\) waren. Teile gut ein!
\[
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
\]

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadrate selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) zerschin ihnen das \(\mathbf{c}^{2}\) genau zukleben kannst! Nun klebe den Fläc \({ }^{\text {bheweis (an }}\) \(\mathbf{a}^{2}+b^{2}=c^{2}\)) in das Heft, zeichne aber dazu, wo \(a^{2}\) und \(b^{2} y\) waren. Teile gut ein!
\[
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}
\]
als ein als ein Farbe. Finde t, damit du mit wiesen, dass - latz also

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadrate selbst, wie du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) zerschm ihnen das \(c^{2}\) genau zukleben kannst! Nun klebe den Fläcb beweis (an \(\left.\mathbf{a}^{2}+b^{2}=\mathbf{c}^{2}\right)\) in das Heft, zeichne Platz also gut ein!

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck
als ein \({ }^{S}\)

Tausche \(a^{2}\) und \(b^{2}\) mit einem anderen Schüler gegen Quadrate and selbst, wie du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) zerschm ihnen das \(c^{2}\) genau zukleben kannst! Nun klebe den Fläcb beweis (an

Farbe. Finde 4, damit du mit wiesen, dass

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadrate selbst, wie du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) zerschis ihnen das \(\mathbf{c}^{2}\) genau zukleben kannst! Nun klebe den Fläc' nbeweis (als ein 9 \(a^{2}+b^{2}=c^{2}\)) in das Heft,zeichne aber dazu, wo \(\quad a^{2} \quad \mathbf{o}^{2}\) vorher wormass

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadrate selbst, wie du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\)) zerschitu ihnen das \(\mathbf{c}^{2}\) genau zukleben kannst! Nun klebe den Fläc \({ }^{\wedge}\),
als ein 9 wiesen, dass \(\mathbf{a}^{2}+b^{2}=c^{2}\)) in das Heft,zeichne aber dazu, wo \(\quad a^{2} \quad \mathbf{0}^{2}\) vorher wa, dir den Platz also gut ein!

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadrate selbst, wie du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) zerschis ihnen das \(\mathbf{c}^{2}\) genau zukleben kannst! Nun klebe den Fläc' obeweis (\(\frac{\left.\mathbf{a}^{2}+b^{2}=\mathbf{c}^{2}\right) \text { in das }}{\text { Platz also gut ein! }}\)

\section*{Pythag. Lehrsatz im Schneidebey}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit einem anderen Schüler gegen Quadrate selbst, wie du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) zerschis ihnen das \(\mathbf{c}^{2}\) genau zukleben kannst! Nun klebe den Fläc' obeweis (
als ein \(S\) 4, damit du mit 'wiesen, dass

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{L) Raumdiagonalen an Quadern und Würfeln}

Die Modelle, die die Raumdiagonalen an Würfel und Quader zeigen sind nicht nur viel einprägsamer und leichter verständlich als jeder Schrägriss mit den Raumdiagonalen dieser Körper - das betrifft vor allem die offenen mehrfarbigen Klappmodelle sondern sie lassen sich besonders gut auch als weitere Denkanstöße verwenden:
Wenn Sie mit den bereits vorbereiteten Modellen aus L 1.4.1 (oder L 1.1.1 und L 1.1.2) kommen und diese dabei auf den Schnittflächen um \(180^{\circ}\) versetzt halten, beginnen die grauen Zellen extrem zu arbeiten, wenn es um die Frage geht, wie man hier wohl das Gesamtvolumen berechnen könne.

\section*{Erreichbare Kompetenzen im Bereich der Raumdiagonalen an Quader und Würfel}
- Sicheres Finden der Raumdiagonale aus der Diagonale der Grundfläche und der Diagonale einer Seitenfläche und sie berechnen können
- Umkehrungsbeispiele lösen können

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Quader als Container (für L 1.1.1/2 und L 1.2.1) \(\sim\) 1.2.2}

Die Klebef am ober oben of Tufbe gehören zur innen geklebt. des Randes nach - Iten Klebefalze der de gehören die Seitenjene des Bodens er Deckel wid nur mit an der Mand angeklebt, dami er Quader imwieder geöffnet erden kann. Zum Verschließen werden nur mehr die Klebefalze des Deckels zwischen Wand und Quaderteilen hineingesteckt.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Dieses Modell wird nach dem Ausschneiden mit dem Boden auf ein Kopierkartonblatt mit anderer

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Dieses Modell wird nach dem Ausschneiden mit dem Boden auf ein Kopierkartonblatt mit anderer

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Klappmodell für die Diagonalen am offenen Würfel}

Dieses Modell wird nach dem Ausschneiden mit dem Boden auf ein Kopierkartonblatt mit anderer Farbe aufgeklebt und dann in einer Klarsichttasche aufbewahrt.

\section*{Klappmodell für die Diagonalen am offenen Würfel}

Dieses Modell wird nach dem Ausschneiden mit dem Boden auf ein Kopierkartonblatt mit anderer Farbe aufgeklebt und dann in einer Klarsichttasche aufbewahrt.

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{M) Quadratische und rechteckige Pyramiden}

Es ist kaum zu glauben: Leistungsschwache und sonst „verhaltensoriginelle" SchülerInnen haben Freude an Mathematik und an ihren sorgfältig ausgeführten Modellen. Sie sind einmal nicht frustriert und suchen eigenständige Lösungswege. Plötzlich sind sonst schwierige Körper nicht mehr schwierig sondern werden geliebt und sogar in Varianten selbst nachgebaut. Und es kommt in der mathematischen Arbeit an den Modellen zu interessanten Lösungsvorschlägen und zu produktiver Arbeit. Formeln zu lernen ist fast nicht notwendig, die hat man sich am Modell erarbeitet. Einzig auf saubere rechnerische Behandlung ist immer wieder hinzuweisen und gerade sauberes Arbeiten wird vom Facharbeiter wie vom Akademiker in der Berufswelt erwartet.

Die Oberfläche von quadratischen oder auch rechteckigen Pyramiden wird ohne allzu große Probleme auch von leistungsschwachen Schülern „durchschaut". Vielen SchülerInnen gelingt es, sich für die Berechnung der Oberfläche eine Formel selbst zu erarbeiten und die Berechnung danach auch durchzuführen.

Gerade an den Pyramiden zeigt sich üblicherweise, dass man zu oft im Leben Vorgekautes übernimmt ohne wirklich den Hintergrund davon zu verstehen. Das trifft im Bereich der Pyramiden ganz besonders auf das Volumen zu. Man bekommt die Volumenformel serviert, soll sie schlucken und in seiner ,inneren Formelsammlung" behalten, ohne zu wissen, warum das Volumen \(1 / 3\) eines gedachten Quaders (oder Würfels) über der Grundfläche ist.

\section*{Erreichbare Kompetenzen im Bereich der Quadratischen und Rechteckigen Pyramiden}
- Den Wert von Klappmodellen in der Geometrie erkennen und solche selbst bauen
- An der Cheopspyramide ihre Größe in der Relation zur Körpergröße erfassen, das Ausmaß des Volumens im Vergleich zum \(\mathrm{cm}^{3}\) und zur durchschnittlichen Klassengröße, Kulturgeschichte, Sozialkunde (versklavte Völker), Religionsgeschichte, Logistik, wissenschaftliche mathematische Leistung
- Andere polygone Pyramiden

\section*{Klappmodell: quadratische Pyramide \\ n)}

Das Klappmodell der Pyramide hat an jeder Seitentr die zum Aufbauen der Pyramide durch den einzuschneito

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Klappmodell: quadratische Pyramide (ay}
n)

\section*{Achtung: Auf verschiedenfarbigen Kopie ton \(k\)}

Das Klappmodell der Pyramide hat an jeder Seitenfla. die zum Aufbauen der Pyramide durch den einzuschneidu

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Die Cheopspyramide im Mo}

\section*{Achtung: Die Berechnungen stimmen nur beim Ausdru}

Du kannst hier ein Modell dieser Pyramide im Maßstab \(\mathrm{M}=1: 1\) eide dazu den Boden (das ist das Quadrat um den Text hier unten) aus und knicke die \(\mathrm{N} \quad\) pach dem Falzen so um, dass der Informationstext und der Aufriss der Py de auf der \(A\) rseite der Pyramide nach unten immer sichtbar bleiben.

\section*{Die Cheopspyramide im M0}

\section*{Achtung: Die Berechnungen stimmen nur beim Ausdrug}

Du kannst hier ein Modell dieser Pyramide im Maßstab \(\mathrm{M}=1\) : Boden (das ist das Quadrat um den Text hier unten) aus und knicke die enach dem Falzen so um, dass der Informationstext und der Aufriss der Py ide auf den terseite der Pyramide nach unten immer sichtbar bleiben.

\section*{Die Wände der Cheops-Pyray \\ Achtung: 2 Ausdrucke auf A4-Karty}

\section*{Achtung:}

Die Seitenwände der
Cheopspyramide sind keine gleichseitigen Dreiecke, wohl aber sind sie natürlich gleichschenkelige Dreiecke. Du musst also nach dem \(A\) iden beim Zusammenbauen genã welche Seite die Basislänge hat.

Die Wände der Cheops-Pyra ace
Achtung: 2 Ausdrucke auf A4-Kar

\section*{Achtung:}

Die Seitenwände der
Cheopspyramide sind keine gleichseitigen Dreiecke, woh aber sind sie natürlich gle
schenkelige Dreiecke.
Du musst also nach dem Aussc) beim Zusammenbauen genau aufp

\section*{Die Cheopspyramide im M0}

\section*{Achtung: Die Berechnungen stimmen nur beim Ausdrug}

Du kannst hier ein Modell dieser Pyramide im Maßstab \(\mathrm{M}=1\) : Boden (das ist das Quadrat um den Text hier unten) aus und knicke die enach dem Falzen so um, dass der Informationstext und der Aufriss der Py ide auf den terseite der Pyramide nach unten immer sichtbar bleiben.

Der Ägyptologie zufolge war die Gr yramide wahrscheintu Grabmal des ägyptischen Pharao Chufu, w kannter unter seinem gfiechischen Namen Cheops, der während d im Alten Reich regierte. Im klassischen Altertum hieß sie " oße vs Cheops" oder lateinisch "Magna Pyramis Cheopis". Diese Pyramide bildet zusammen mit ihren Schwest hephren-Pyramide und der Mykerinos-Pyramide. zugleich das älteste und a noch existierende Weltwunder der Antike. Stellung des Bauwerks wird auf 2580 v. Chr. in die Zeit des Alten Re \(\begin{array}{lll}\text { in die Zeit des Alten Re } & & \text { melsrichtungen ausgerichtet und } \\ \text { Die Cheops-Pyramide } \\ \text { der Unterschied in d } \\ \mathrm{cm}(<1 \% \text { nom }) \text {. Die ve } & \text { ngen ib } & \text { deten }\end{array}\) Basismaß \(23^{2} \mathrm{~m}\) Höhe/ursprïnclan
Volumen 2 Der Maßstalo 1: 1000
usendste Teil der wahren Güße nur mehr der 1 millionste Til (\(1000^{2}\)) der Seim Volumen entspricht \(1 \mathrm{~cm}^{3}\) (jieses Modells alpyramide. Das sind \(1000 \mathrm{~m}^{3}\), ode etwa assenzimmer voll mit Steinblöcken für jeden obrigens: Wie groß ist bei diesem Modell ein Mensch \(\mathrm{m}^{3}\) des Mo
 vor der Pyramide steht?

\section*{Klappmodell: Rechteckige Pyramide (a=8 cy}

\section*{Klappmodell: Rechteckige Pyramide (\(\mathrm{a}=8 \mathrm{cc} \quad \mathrm{cm} \quad 5 \mathrm{~cm}\))}

\section*{Achtung: Auf verschiedenfarbigen Kopierk on koy}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Rechteckige Pyramide (a=6 cm b=8}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Beschrifte vor dem Zusammenbauen alle wichtigen Strecken die für die Berechnungen der Pyramide wichtig sind.

\section*{Rechteckige Pyramide 4 x}

Beschrifte vor dem Zusammenbauen alle wichtigen Strecken

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Regelmäßige sechseckige Pyramid}

Ergänze beim rechten Dreieck die fehlenden Linienteile

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Regelmäßige sechseckige Pyramid \(\quad \mathrm{scm}_{\mathrm{cm}}\)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{N) Volumensbeweise für die Pyramiden}

Im Modell \(\mathbf{N}\) 1.1.1 - \(\mathbf{2}\) ist zu sehen, dass ein Würfel in \(\mathbf{3}\) schiefe Pyramiden gleicher Grundfläche und gleicher Höhe zerlegt werden kann. Jede Pyramide hat \(\mathbf{1 / 3}\) des Würfelvolumens.

Im Modell N 1.2.1-4 wird ein Quader in 3 verschiedene schiefe Pyramiden zerlegt: Jene mit der kleinsten Grundfläche hat die größte Höhe, jene mit der größten Grundfläche hat die kleinste Höhe, jene mit der mittleren Grundfläche hat die mittlere Höhe. Man kann natürlich jeweils die Grundflächen ausrechnen und ebenso wie die Höhen in ein Verhältnis zu einander stellen. Es zeigt sich, dass jede Teilpyramide \(1 / 3\) des Gesamtvolumens hat. (Das kann man auch durch Messen - wie in den „methodisch-didaktischen Vorbemerkungen zu D) „Raummaße und Würfel" angeführt beweisen.)

Das schönste aber auch schwierigste Modell für den Beweis (N 2.1a/N 2.1b) führt den Beweis für eine gerade Pyramide. Die ,Abfälle" ergeben 2 flache Pyramiden mit großer Grundfläche. Alle diese Volumensbeweise sollten nur von leistungsstarken SchülerInnen (nur als Lehrmittel!) gebaut werden!

Wichtig für die Arbeit mit den Modellen sind die „Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise „Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.

\section*{Erreichbare Kompetenzen}

\section*{im Bereich der Volumensbeweise für Pyramiden}
- Sicheres Beherrschen der Volumenformel durch einprägendes Handeln und Erleben
- Mit den 3 Drittel eines Würfels bzw. Quaders zeigen können, dass das Volumen der Pyramide nur ein Drittel des ursprünglichen Körpers ist
- Mit der „Negativpyramide" des Würfels zeigen können, dass die Pyramide selbst nur ein Drittel des Gesamtvolumens ist
- Mit der „Negativpyramide" des Quaders zeigen können, dass die Pyramide selbst nur ein Drittel des Gesamtvolumens ist
- Modelle für „Füllbeweise" der Pyramide anwenden und für andere Modelle in der Geometrie überlegen

\section*{Schiefe Pyramide ist \(\mathbf{1 / 3}\) eines Würfe}

\section*{Schiefe Pyramide ist 1/3 eines Würfe}

\section*{Schiefe Pyramide ist \(1 / 3\) eines Würfe}

\section*{Gerade Pyramide ist \(1 / 3\) eines Würfe \\ 3 Kopien mit verschiedenen Farben}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Behälter für Pyramidenteile vom \\ 2 Kopien}

In diesem oben offenen Würfel (der Deckel wird nicht zugeklebt!) werd Die Klebefalze am oberen Rand des Behälters werden zum Verstärken nach innen und auch čanderen Kleu

\section*{Behälter für Pyramidenteile vom \\ 2 Kopien}

In diesem oben offenen Würfel (der Deckel wird nicht zugeklebt!) werd Die Klebefalze am oberen Rand des Behälters werden zum Verstärken nach innen und auch \(\boldsymbol{c}^{4}\) - anderen Klès

\section*{3 schiefe Pyramiden gleichen Volumens ergeben}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{3 schiefe Pyramiden gleichen Volumens ergeben} 3. Teil

3 schiefe Pyramiden gleichen Volumens ergeben 3. Teil

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
Teile mit Spitze links für die Negativ \\ \\ 2 Kopien
} \\ \\ 2 Kopien
}

Die insgesamt 8 Teile aus den 4 Ausdrucken werden zu 2 Gru flacher Pyr miden zusammengestellt. Dabei werden die Teile mit der R. ekflächa auf die Unterlage gelegt und die Spitzen werden zusammengr . So en en 2 niedrige Pyramiden. Diese haben jeweils die doppelte zentralen Hauptpyramide, aber nur deren halbe Höhc das gleiche Volumen wie diese. Jede der drei Pyram‘den ist groß. Jede Pyramide hat also \(1 / 3\) des Volumens d arfels. Die 8 Teile lassen sich als "Negativ-Pyramide" hen oben offenen Würfel mit \(s=9 \mathrm{~cm}\) einfügen und mit der eig Pyramide ergänzen. Zusätzlich lässt sich mit grobem arn ein Volumens-Messbeweis durchführen: In Pl, ast du gelernt, man das Volumen eines unregelmäligen Körpers mit Wasser bestimmt. Es muss aber nicht immer Wasser sein, das durch einan festen Körper verrrängt wird!

\title{
Teile mit Spitze links für die Negativ \\ \\ 2 Kopien
} \\ \\ 2 Kopien
}

Die insgesamt 8 Teile aus den 4 Ausdrucken werden zu 2 Gru miden zusammengestellt. Dabei werden die Teile mit der R ckfläch auf die Unterlage gelegt und die Spitzen werden zusammeng 2 niedrige Pyramiden. Diese haben jeweils die doppelte zentralen Hauptpyramide, aber nur deren halbe Höhc. das gleiche Volumen wie diese. Jede der drei Pyram*den ista groß. Jede Pyramide hat also \(1 / 3\) des Volumens d arfels. Die 8 Teile lassen sich als "Negativ-Pyramide" aen oben offenen Würfel mit s \(=9 \mathrm{~cm}\) einfügen und mit der eig Pyramide ergänzen. Zusätzlich lässt sich mit grobem ab ein Volumens-Messbeweis durchführen: In Plo ast du gelerith, man das Volumen eines unregelmäßigen Körpers mit Wasser bestimmt. Es muss aber nicht immer Wasser sein, das durch pinan festen Körper verdrängt wird!

\section*{Teile mit Spitze rechts für die Negatiy \\ für Volumensbeweis aus Würfel mit s=9}

\section*{2 Kopien}

Übrigens sind die 2 Körperarten eine Kombination aus jeweils einer 1/8-Pyramide und einem Skalenoeder.

Hier unterhalb sieht man, wie die Teile in den offenen Würfel eingefügt werden. Di Rechteckflächen berühren die Außenwä de. Die gleichschenkeligen Dreiecke si natürlich die Standflächen.

Aus: Geometrische Flawen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Teile mit Spitze rechts für die Negatiy für Volumensbeweis aus Würfel mit s=9}

\section*{2 Kopien}

Übrigens sind die 2 Körperarten eine Kombination aus jeweils einer 1/8-Pyramide und einem Skalenoeder.

Hier unterhalb sieht man, wie die Teile in den offenen Würfel eingefügt werden. Di Rechteckflächen berühren die Außenwä de. Die gleichschenkeligen Dreiecke si natürlich die Standflächen.

Aus: Geometrische Flawen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
4 Teile mit Spitze links für die Negatiy
}

Die insgesamt 8 Teile aus den 4 Fotokopien werden zu 2 Grup miden zusammengestellt. Dabei werden die Teile mit der R ckflächa auf die Unterlage gelegt und die Spitzen werden zusammenge 2 niedrige Pyramiden. Diese haben jeweils die doppelte zentralen Hauptpyramide, aber nur deren halbe Höhow das gleiche Volumen wie diese. Jede der drei Pyrarden ist groß. Jede Pyramide hat also \(1 / 3\) des Volumens d arfels. Die 8 Teile lassen sich als "Negativ-Pyramide" aen oben offenen Würfel mit \(\mathrm{s}=9 \mathrm{~cm}\) einfügen und mit der eig Pyramide ergänzen. Zusätzlich lässt sich mit grobem son ein Volumens-Messbeweis durchführen: In Plo, ast du gelerith,

\section*{4 Teile mit Spitze rechts für die Negati}

\section*{4 Kopien}

\section*{(eventuell in 2 verschiedenen Farben)}

Übrigens sind diese \(\mathbf{2}\) Körperarten aus N 2.1a und \(\mathbf{N}\) 2.1b eine Kombination aus jeweils einer 1/8-Pyramide (N 2.2a) und einem Skalenoeder (N 2.2 b).

Hier unterhalb sieht man, wie die Teile in den offenen Würfel eingefügt werden. Rechteckflächen berühren die Außeny de. Die gleichschenkeligen Dreiecke sina natürlich die Standflächen.

Aus: Zeometrische Flawen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Pyramide und "Negativ-Pyramide" für V}

4 Kopien sind für die Pyramide selbst notwo

Der offene Würfel mit den Pyramidenteilen

Rechts oben sié, wie der offene Wiut der Negativpyramide go Die die

\section*{Pyramide und "Negativ-Pyramide" für V "I beweis}

4 Kopien sind für die Pyramide selbst notweitt, 4 Kopien in einer anderen Farbe für einen Teil * Negativp,

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net
(Skalenoeder = Keilkörper)

 m Volumens-Messbeweis feststellen. (In Physik hast du gelernt, wie man das Volumen (Skalenoeder = Keilkörper) 4 Kopien (in einer dritten Farbe

\section*{Oben offener Würfel}

\section*{als Behälter für die Pyramidenteile als Beweis für das} Je 2 Kopien für die beiden Beweisarten aus \(\mathbf{N} 2\)

Die Klebefalze am oberen Rand des nach oben offenen Aufbewahrungsbehälte Randes nach innen geklebt. Auch die doppelten Klebefalze gehören in an den is geklebt, damit die Pyramidenteile in den Würfel gegeben werden kg̈

\section*{Behälter für}

N 2.1 / N 2.2

\section*{Oben offener Würfel}
als Behälter für die Pyramidenteile als Beweis für das \(P\) Je 2 Kopien für die beiden Beweisarten aus N 2

Die Klebefalze am oberen Rand des nach oben offenen Aufbewahrungsbehältex Randes nach innen geklebt. Auch die doppelten Klebefalze gehören in an den is geklebt, damit die Pyramidenteile in den Würfel gegeben werden kö

\section*{Einfacher Volumensbeweis für die quadra ne ramide}

\section*{Einfacher Volumensbeweis für die quadra rie}
\[
h_{a}=7,5 \mathrm{~cm} \quad a=9 \mathrm{~cm} \quad h=6 \mathrm{~cm}
\]

Falze zuers Yer Pyramide, onneide sie aus und klebe sie zur quadratischen Pyramide ohne Boden zusammen. rpelklebefalze absichtlich verzichtet! Stell sie nun auf den Tisch, dabei klappe die unteren Klebefa, sie nun senkrecht høch. Jetzt wird der Mantel des quadratischenen Quaders rund um die Pyramide aut nun innen liegenden Klebefalzen angeklebt. Zum Schluss werden die oberen Klebefalze des Quà ach int und entweder zur Versteifung des Quaders angeklebt oder lass sie zur Sta der Sè rechinnkelig wegstehen.

\section*{Volumenbeweis wird durch das Füllen mit Hirse geführt:}

Das adell urn
erst wird die Pyramide wird mit Hirse gefüllt und ihr Volumen wird mit einer Mensur s Nun wira-das Volumen des restlichen Quaders gemessen: Es ist doppelt so groß! Die Pyrams hei gleicher Grundfläche und gleicher Höhe nur 1/3 des Volumens des gesamten Q is .

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Einfacher Volumensbeweis für die qua}

\section*{Einfacher Volumensbeweis für die qua
\[
\begin{array}{l}\mathrm{h}=7,5 \mathrm{~cm} \quad \mathrm{a}=9 \mathrm{~cm} \quad \mathrm{~h}=6 \mathrm{~cm}\end{array}
\]}

Falze zuerst di Wände der de sie aus und klebe sie zur quadratischen Pyramide ohne Boden zusammen.
ntlich verzichtet! Stell sie nun auf den Tisch, dabei klappe die unteren Klebe

Biege
les um die Pyra, Klebefalze des Stabilisierung de, vana kelig wegstehen.

Der Volumenbeweis wird durch das Füllen mit Hirse geführt:
yerst wird die Pyramide wird mit Hirse gefüllt und ihr Volumen wird mit einer
\[
\begin{aligned}
& \text { Die Py bessers beicher Grundfläche und gleicher Höhe nur } 1 / 3 \text { des Volumens } \\
& \text { des gesamı }
\end{aligned}
\]

\section*{Einfacher Volumensbeweis für die rechte se amide}

Falze zuerst die Wände dun dann zusammen. \(\mathrm{H}^{\prime}\) rird auf Dops teren Klebef

мßen. Biego nd mit den nun innen liegenden Klebefalzen angeklebt. Zum Schluss werden die oberen Klebefalze da geknickt und zur Versteifung der Quaders angeklebt oder lass sie zur Versteifung der Seitenwänd wint tehen.

\section*{Einfacher Volumensbeweis für die rechte get}
\(h_{a}=7,5 \mathrm{~cm} \quad h_{b}=8,2 \mathrm{~cm} \quad a=9 \mathrm{~cm} \quad b=6 \mathrm{~cm}\)

Falze zuerst die Wände an dann zusammen. \(\mathrm{H}^{\prime}\) ird auf Doplich verzichtet! Stell sie nun auf den Tisch, dabei klappe die unteren Klebef um die Pyr Klebefalze da der Seitenwänd krecht hoch. Jetzt wird der Mantel des rechteckigen Quaders rund -nd mit den nun innen liegenden Klebefalzen angeklebt. Zum Schluss werden die oberen v geknickt und zur Versteifung der Quaders angeklebt oder lass sie zur Versteifung

Der Nlumenbeweis wird durch das Füllen mit Hirse geführt:
Zuerst wird die Pyramide wird mit Hirse gefüllt und ihr Volumen wird mit einer

\section*{Die Py hat bergeeicher Grundfläche und gleicher Höhe nur 1/3 des Volumens des gesamu}

\section*{Einfacher Volumensbeweis für die rechte ge amide}

Falze zuers
meide sie aus und klebe sie zur rechteckigen Pyramide ohne Boden zusammen teren Klebei um die Pyramio, Klebefalze des Q

Falze zuerst zusammen. teren Kleb um die Pyram, Klebefalze des der Seitenwände
aide sie aus und klebe sie zur rechteckigen Pyramide ohne Boden -Doppelkleborm osichtlich verzichtet! Stell sie nun auf den Tisch, dabei klappe die un-

Der Volumenbeweis wird durch das Füllen mit Hirse geführt:
erst wird die Pyramide wird mit Hirse gefüll und ihr Volumen wird mit einer Mel as Volumen des restlichen Quaders gemessen: Es ist doppelt so groß! Die Pyı, hat beit greicher Grundfläche und gleicher Höhe nur 1/3 des Volumens des gesamt

\title{
Methodisch - didaktische Vorbemerkungen zu
}

\section*{O) Ab- und Ausschnitte an Pyramiden}

Diese Modelle eignen sich hervorragend, die rechtwinkeligen Dreiecke innerhalb der Pyramide sichtbar zu machen. Mit deren Hilfe können durch die Verwendung des Pythagoräischen Lehrsatzes fehlende Maße berechnet werden.

Zusätzlich ermöglichen diese Modelle das lockere Erarbeiten von Volumsformeln, die in keiner Formelsammlung gefunden werden können, zum Beispiel die Formel für eine 5/8Pyramide.

Wichtig für die Arbeit mit den Modellen sind die „Allgemeinen methodisch - didaktischen Vorbemerkungen" und die
Hinweise ,_Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.

\section*{Erreichbare Kompetenzen}

\section*{im Bereich der Ab- und Ausschnitte an Pyramiden}
- Sicheres Beherrschen der Volumsberechnung der Pyramide
- Mit Formeln „spielen" können, Formeln selbst für spezielle Anwendungen adaptieren

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{3/4 einer rechteckigen Pyramide}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{P) Pyramidenstümpfe: Basis und Spitze in Relation}

Hier geht es besonders um das Erkennen provokanter geometrischer Zusammenhänge mit dem Strahlensatz:

Wenn ich eine Pyramide in halber Höhe abschneide, habe ich dann das halbe Volumen weggeschnitten? Das kann es wohl nicht sein, wenn man die beiden Teile Basis (Pyramidenstumpf) und Spitze miteinander vergleicht! Der Zugang ist der Vergleich der Basislänge der großen Py-ramide mit jener der abgeschnittenen Spitze. Das gilt ganz gleich auch bei rechteckigen Pyra-miden. Die Spitze hat die halbe Länge, die halbe Breite und die halbe Höhe und daher (\(1 / 2\) mal \(1 / 2\) mal \(1 / 2\)) nur mehr \(1 / 8\) des gesamten Volumens. Der Pyramidenstumpf hat also 7/8 des Volumens der Pyramide.

Schneiden wir eine Pyramide im oberen Drittel ab, so hat die Spitze (\(1 / 3 \mathrm{mal} 1 / 3 \mathrm{mal} 1 / 3\)) also nur mehr 1/27 des Gesamtvolumens, bzw. 26/27 des Volumens hat der Sockel.

Wie ist die Relation der beiden Oberflächen zueinander? Warum passt das hier nicht so? Ach ja: Da ist ja die neue Deckfläche des Pyramidenstumpfes, die hier noch dazugerechnet werden muss! Außerdem gilt bei den Dreiecksflächen nur halbe Höhe und halbe Breite bzw. \(1 / 3\) der Höhe und \(1 / 3\) der Breite.

\footnotetext{
Wichtig für die Arbeit mit den Modellen sind die „Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise „Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.
}

\section*{Erreichbare Kompetenzen}

\section*{im Bereich der Pyramidenstümpfe}
- Sicheres Beherrschen der Volumenformel für die Pyramide
- An der Knickpyramide des Snofru ihre Größe in der Relation zur Körpergröße erfassen, das Ausmaß des Volumens im Vergleich zum \(\mathrm{cm}^{3}\) und zur durchschnittlichen Klassengröße, Kulturgeschichte, Sozialkunde (versklavte Völker), Religionsgeschichte, Logistik, wissenschaftliche mathematische Leistung
- Pyramidenstümpfe berechnen können
- Durch Anwendung des Strahlensatzes die Volumenverhältnisse von Pyramidenstumpf zur abgetrennten Pyramidenspitze begründen können
- Aus dem Angebot der „Denknüsse" einzelne herausgreifen, bauen, analysieren und zu berechnen versuchen

\section*{Eine Pyramide verliert die Spitze (1) \(\mathrm{cman}_{\mathrm{m}}\)}

Wenn eine Pyramide in halber Höhe abgeschnitten wird....
a) wieviel vom Gesamtvolumen hat die Spitze? b Schätze das zuerst einmal!
c) Wie verhalten sich die Oberflächen zueinanderr.

\section*{Eine quadr. Pyramide verliert di pitz}

Überlege, wie du aus der L.
der Länge der Deckfläche des
 der Höhe der Seitenwan,\(=3 \mathrm{~cm}\)) m fes \(\left(\mathrm{a}_{2}=4 \mathrm{~cm}\right)\) und die Körperhöhe berec kannst. th. Lehrsatz

Wenn eine Pyramide in halber Höhe abgeschnitten wird....
a) wieviel vom Gesamtvolumen hat die Spitze?
b Schätze das zuerst einmal!
c) Wie verhalten sich die Oberflächen zueinander?

Wenn eine Pyramide in halber Höhe abgeschnitten wird....
a) wieviel vom Gesamtvolumen hat die Spitze? b Schätze das zuerst einmal!
c) Wie verhalten sich die Oberflächen zueinander?

\section*{Eine quadr. Pyramide verliert di pitz} Überlege, wie du aus der Länge d rundka der Länge der Deckfläche des K der Höhe der Seitenwand (\(\mathrm{h}_{\mathrm{a}}=4 \mathrm{~cm}\))

Wenn eine Pyramide in halber Höhe abgeschnitten wird....
a) wieviel vom Gesamtvolumen hat die Spitze?
b Schätze das zuerst einmal!
c) Wie verhalten sich die

\section*{Eine Pyramide verliert die Spi}

Konstruiere zusätzlich auf einem Abfall
karton die noch fehlende Grundfläche
samt ihren Klebefalzen und beschrifte wichtigen Strecken an der Pyramide.

\section*{Eine quadratische Pyramide verliert}
Überlege, wie du aus der Länge der Gr der Länge der Deckfläche des Kegels
 der Höhe der Seitenwand mit dem \(P^{\text {}}\) die Körperhöhe berechnen kannst.

\section*{Eine Pyramide verliert die Sp}

Warum kann diese "schöne" Konstruktion keinen Pyrami cumpfe

\section*{Eine Pyramide verliert die S}

Warum kann diese "schöne" Konstruktion keinen Pyram Überlege, was hier der Fehler ist'

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Warum kann diese "schöne" Konstruktion keinen Pyra}

Überlege, was hier der Fehler ist!
Nur zur Vorinformation:
Der Fehler liegt nicht darin, dass das Netz hier aus Platzgrï unter \(45^{\circ}\) go - ichnet ist!

\section*{Eine Pyramide verliert die Spi}

Die seitlichen Klebefalze müssen spitzer geschnitten werden, als sie eingezeichnet sind. Was ist der Grund dafür, dass sie so schlank sein müssen?
Beschrifte an diesen Teilen alle wichtigen Strecken.

\section*{Eine quadratische Pyramide verlier}

Überlege, wie du aus der Länge der Grundkante, der Länge der D und der Höhe der Seitenwand mit dem Pyth. Lehrsatz die Körp
däche d hare

Die seitlichen Klebefalze der Spitze müssen spitzer und schmäler geschnitten werden, als sie eingezeichnet sind.
Was ist der Grund dafür, dass sie so schlank sein müssen? Beschrifte am Netz alle wichtigen Strecken.

\section*{Die Knickpyramide des Pharao Snofry}

\section*{Achtung：Diese Berechnungen stimmen nur beim sdruc A4－Karton！}

Du kannst hier ein Modell dieser Knickpyramide im Maßstab \(\mathrm{M}=1\) aneide dazu den Boden（gleich hier unterhalb）aus und knicke die Klebefalze nach \(⿴ 囗 ⿰ 丿 ㇄\) der Informa－ tionstext und der Aufriss der Pyramide auf der Bodenunterseite d amide nach

\section*{Die Knickpyramide des Pharao Snofry Achtung：Diese Berechnungen stimmen nur beim A4－Karton！}

Du kannst hier ein Modell dieser Knickpyramide im Maßstab \(\mathrm{M}=1\)
aneide dazu den der Informa－ tionstext und der Aufriss der Pyramide auf der Bodenunterseite d amide nach on sichtbar bleiben．

Das Bauwerk wurde im 15．Jahr der Regierung Königs（Pharaos）Snofru（2639—04 v．Chr） begonnen．Der Standort ist ein bis dahin unb \(\quad\) ateau，dessen Untergrund aus relativ weichen Tonschieferplatten besteht．Geplay Ancinem Neigungswinkel von \(60^{\circ}\) und nach innen gelegten Steinlagen．Diey struktionsm instabile Boden zwangen den Baumeister，bereits früh einen Steingu am das Bauwerk zu verringern．Nach einer nicht allgemein anerkannten Theorie gab elma rophe（durch Abrut－ schen der äußeren Steinquader）bei der zeitgleich errichteten Meidum－Pyrarm ，die auch als \(54^{\circ}\)－Bau－ werk konzipiert war，den Anlass re Bauplanänderung．
In einer Höhe von 45 m wurd \(\quad\) ff \(43^{\circ} 2^{\prime}\) reduziert．An dieser Stelle betrug die Breite der Pyramide noch immer 123，9 Druckentlas man die Steinlagen jetzt horizontal．Bei einer Basislänge von 188 y immerhin noch 105 m hod

Hier siehst du den Aufriss de pyramide．Die strichlierte Linie \＆ wie hoch die Pyra ohne Ände－ rung des Neiguy worden wäre：129， Geine Pyr
Quelle．

\section*{Die Seitenwände der Knickpy}

\section*{Die Knickpyramide des Pharao Snof in \\ Achtung: Diese Berechnungen stimmen nur beir Adruc A3-Karton!}

P 2.1

Du kannst hier ein Modell dieser Knickpyramide im Maßstab M : 1000 bneide dazu den Boden (gleich hier unterhalb) aus und knicke die Klebefalze nac IV Falzen so a der Informationstext und der Aufriss der Pyramide auf der Bodenunterseite yramide nach unta er sichtbar bleiben.
 und nach innen gelegten Steinlagen. Dieser den Baumeister, bereits früh einen Steingürt zu verringern. Nach einer nicht allgemeiv ab eine Baukatastrophe (durch Abrutschen der äßßeren Steinquader) bei der ch errichto Dyramide, die auch als \(54^{\circ}\)-Bauwerk konzipiert war, den Anlass für eine 1 , ere Bauplanändèt In einer Höhe von 45 m wurde der Winkel auf \(43^{\circ} 22^{\prime}\) reduziert. Ar elle betrug die Breite der Pyramide noch immer 123,9 m. Znernander verlegte man die Sunilagen jetzt horizontal. Bei einer Basislänge von 188 m w ranfide mit einem geknickten Seitenwinkel entstanden, die immerhin noch 105 m hoch y
Hier siehst du den Aufriss de pyramide. Die strichlierte Li wie hoch die Pyramide ohne rung des Neigungswinkels

\section*{Eine rechteckige Pyramide verliert d op (1)}

Überlege, wie du aus der Länge bzw. Breite der Grundkante, der L̈̈ des Kegelstumpfes und der Höhe der Seitenwände mit dem Pyth. Le

\section*{Eine rechteckige Pyramide verliert d op (2)}

\section*{Eine rechteckige Pyramide verliert d op (2)}

\section*{Eine rechteckige Pyramide verliert}

Schneide diese Pyramide so ab, dass die Seitenwände eine Höhe von 2 des Pyth. Lehrsatzes die Körperhöhe des so entstehenden Pyramidensty Bodenfläche der entstehenden Pyramidenspitze konstruiere samt Kleb
aben. B
s. Seine
©d ctisucken.

\section*{Eine rechteckige Pyramide verliert}

\title{
Eine rechteckige Pyramidenspitz9 einen Pyramidenstump
}

Das ist die Spitze einer rechteckigen Pyramide. Ergänze sie durch c
Pyramidenstumpfes, dessen Seitenwände an der Breitseite der Pyramita Mach diese Konstruktion zuerst auf einem Blatt Papier, dan erst auf

bis
P4.5a-f

\section*{Dennknüser}

\section*{6 Pyramiden und ihre Teile, die einem etwas aufzulösen geben!}

\section*{Da gibt es keine Haftung des Autors für entstandene Kopfschmerzen, rauchende oder gar zerbrochene Köpfe!!!}

Die nun folgenden Pyramiden haben alle die gleiche quadratische Grundfläche mit \(\mathbf{a}=\mathbf{9} \mathbf{~ c m}\) und die gleiche Körperhöhe \(\mathrm{H}=\mathbf{1 0} \mathrm{cm}\).

Baue die Modelle so, dass man beim Umdrehen der Modelle auf der Grundfläche die Beschriftung der Grundkanten sehen kann. Beim Zusammenbauen müssen an den Spitzen die Klebefalze teilweise noch flacher geschnitten werden.

Benennungen, die Du für deinen Lösungsweg brauchen wirst, kannst Du (mit Bleistift) gleich noch vor dem Zusammenkleben eintragen. Mach Dir auch gleich eine Liste mit den vorhandenen Maßen des Modells!

Versuche, für Modelle das Volumen, die Mantelfläche und die ganze Oberfläche zu berechnen. Interessant ist vielfach das Größenverhältnis zwischen Teil (Pyramidenspitze bzw. Pyramidenstumpf) und ganzer Pyramide.

Bei allen Berechnungen helfen Formelsammlungen nichts, sondern nur die berühmten grauen Zellen!
Stelle in einer Tabelle die Ergebnisse für die 6 Pyramiden vergleichend dar und begründe, warum sich die Ergebnisse so zeigen.

Natürlich kannst und wirst Du nicht allein alle Modelle bauen und berechnen. Diskutiere mit Deinen FreundInnen die möglichen Lösungswege und teilt euch Bau und Berechnung der Modelle auf!

Diese Modelle sind gleichermaßen eine Herausforderung für SpitzenschülerInnen als auch für interessierte LehrerInnen! Teamarbeit ist hier das Gebot der Stunde!

Übrigens: Auch Lehrern gelingt es bestens, einmal Fehler zu machen oder "auf der Leitung zu stehen". Das einzugestehen ist keine Schande und macht uns gegenüber unseren SchülerInnen nur menschlicher!

Natürlich kann es auch mir gelungen sein, bei den Modellen den einen oder anderen Fehler gemacht zu haben. Wenn Du auf so einen Fehler daraufkommst, schick mir bitte ein Mail! Als kleines Danke darfst Du Dir dann 5 Seiten aus meiner Modellsammlung in "www.mathematikmodelle.net" aussuchen, die ich Dir dann schicke.

\section*{Dennknürrr}

\section*{6 Pyramiden, die einem etwas aufzulösen geben!}

Die nun folgenden Pyramiden haben alle die gleiche quadratische Grundfläche mit a=9 cm und die gleiche Körperhöhe \(\mathrm{H}=10 \mathrm{~cm}\).

Baue alle Modelle so, dass man beim Umdrehen der Modelle auf der Grundfläche die Beschriftung der Grundkanten sehen kann. Beim Zusammenbauen müssen an den Spitzen die Klebefalze teilweise noch flacher geschnitten Werden.

Versuche, für alle 6 Modelle das Volumen, die Mantelfläche und die ganze Oberfläche zu berechnen.

Stelle in einer Tabelle die Ergebnisse für die 6 Pyramiden vergleichend dar und begründe, warum sich die Ergebnisse so zeigen.
\begin{tabular}{|c|l|l|l|l|}
\hline Modell & Volumen & \multicolumn{1}{|c|}{ Mantelfläche } & -Grundfläche \(=\) Oberfläche \\
\hline P4.1a & & & & \\
\hline P4.1b & & & & \\
\hline P4.1c & & & & \\
\hline P4.1d & & & & \\
\hline P4.1e & & & & \\
\hline
\end{tabular}

\section*{Denknüsse (1.a1) mit Pyram an}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Denknüsse (1.a2) mit Pyram an}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Denknüsse (1c.1) mit Pyram en}

Bei dieser Py
senkrecht üb
Grundfläche.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Denknüsse (1d.2) mit Pyram an}

\section*{Denknüsse (1e.1) mit Pyram an}
 Mittelpunktes von \(\mathrm{a}_{1}\).

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be -greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{}

\section*{6 Pyramidenstümpfe, die einem etwas aufzulösen geben!}

Die nun folgenden Pyramidenstümpfe haben alle die gleiche quadratische Grundfläche mit a \(=9 \mathrm{~cm}\) und sie hatten ursprünglich die gleiche Körperhöhe \(\mathbf{H}=10 \mathrm{~cm}\). (Die Ausgangsmodelle findest Du unter P4.1a-f)

Baue alle Modelle so, dass man beim Umdrehen der Modelle auf der Grundfläche die Beschriftung der Grundkanten sehen kann. Beim Zusammenbauen müssen die Klebefalze teilweise noch nachgeschnitten werden.

Versuche, für alle 6 Modelle das Volumen, die Mantelfläche und die ganze Oberfläche zu berechnen.
Vergleiche Volumen und Mantelfläche der Modelle mit ihrem Ausgangsmodell. (Zahl für das ganze Modell dividiert durch die Zahl für den zugehörenden Pyramidenstumpf. Schreibe die Rechnung auch als Bruch an und kürze!
Was fällt hier beim Volumensvergleich auf und was beim Vergleich der Mantelfläche? Findest Du eine Begründung?)
Stelle in einer Tabelle die Ergebnisse für die 6 Pyramidenstumpfmodelle vergleichend dar und begründe, warum sich die Ergebnisse so zeigen.
\begin{tabular}{|c|l|l|l|l|}
\hline \multirow{2}{*}{ Modell } & Volumen & Mantelfläche & \multicolumn{2}{|c|}{\begin{tabular}{c}
Ergebnis des Vergleichs mit dem Ausgangsmodell \\
Mantelgrößen im Vergleich
\end{tabular}} \\
\hline P4.2a & & & & Die Volumina im Vergleich \\
\hline P4.2b & & & & \\
\hline P4.2c & & & & \\
\hline P4.2d & & & & \\
\hline P4.2e & & & & \\
\hline
\end{tabular}

\section*{Denknüsse mit Pyramidenstümp}

\section*{Denknüsse}

\section*{6 Spitzen zu den Pyramidenstümpfen, die einem etwas aufzulösen geben!}

Die nun folgenden Pyramidenspitzen gehören alle zu den Modellen P4.2a-f . Die ursprünglichen Pyramiden hatten alle die gleiche quadratische Grundfläche mit \(\mathbf{a}=9 \mathrm{~cm}\) und sie hatten die gleiche Körperhöhe \(\mathbf{H}=10 \mathrm{~cm}\). (Die Ausgangsmodelle findest Du unter P4.1a-f)

Baue alle Modelle so, dass man beim Umdrehen der Modelle auf der Grundfläche die Beschriftung der Grundkanten sehen kann. Beim Zusammenbauen müssen die Klebefalze teilweise noch nachgeschnitten werden.

Versuche, für alle 6 Modelle das Volumen, die Mantelfläche und die ganze Oberfläche zu berechnen.
Vergleiche Volumen und Mantelfläche der Modelle mit ihrem Ausgangsmodell. (Zahl für das ganze Modell dividiert durch die Zahl für den zugehörenden Pyramidenstumpf. Schreibe die Rechnung auch als Bruch an und kürze! Was fällt hier beim Volumensvergleich auf und was beim Vergleich der Mantelfläche? Findest Du eine Begründung?)

Stelle in einer Tabelle die Ergebnisse für die 6 Pyramidenspitzen vergleichend dar und begründe, warum sich die Ergebnisse so zeigen.
\begin{tabular}{|c|l|l|l|l|}
\hline \multirow{2}{*}{ Modell } & Volumen & Mantelfläche & \multicolumn{2}{|c|}{\begin{tabular}{c}
Ergebnis des Vergleichs mit dem Ausgangsmodell \\
Mantelgrößen im Vergleich
\end{tabular}} \\
\hline P4.3a & & & & \\
\hline P4.3b & & & & \\
\hline P4.3c & & & & \\
\hline P4.3d & & & & \\
\hline P4.3e & & & & \\
\hline P4.3f & & & & \\
\hline
\end{tabular}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Denknüsse: Spitze zum Pyramiden}

\section*{}

\section*{Pyramidenstümpfen mit Abschrägung}

Die nun folgenden keilartig abgeschrägten Pyramidenstumpfmodelle haben alle die gleiche quadratische Grundfläche mit \(\mathbf{a}=\mathbf{9 c m}\) und sie hatten ursprünglich die gleiche Körperhöhe \(\mathrm{H}=10 \mathrm{~cm}\).

Baue alle Modelle so, dass man beim Umdrehen der Modelle auf der Grundfläche die Beschriftung der Grundkanten sehen kann.

Die Klebefalze müssen teilweise noch flacher geschnitten werden.
Versuche, für alle 6 Modelle das Volumen und die Oberfläche zu berechnen. Zur Information und Hilfe:
Alle Schnitte wurden in halber Körperhöhe der Ausgangspyramide bzw. \(\mathbf{h}_{\text {a1 }}\) parallel zu \(a_{1}\) gleichmäßig fallend bis in Richtung \(a_{3}\) durchgeführt.
Du kommst nicht daran herum, Dir dieses Modell in Gedanken zu zerschneiden. Die einzelnen Teile lassen sich dann leichter berechnen. Welche Maße musst Du Dir erst mit dem Pythagoräischen Lehrsatz berechnen?

Stelle in einer Tabelle die Ergebnisse für die 6 Pyramidenstumpfmodelle vergleichend dar und begründe, warum sich die Ergebnisse so zeigen.
\begin{tabular}{|c|l|l|l|l|}
\hline Modell & Einzelne Volumensteile & Volumen & Mantelfläche & Oberfläche \\
\hline P4.4a & & & & \\
\hline P4.4b & & & & \\
\hline P4.4c & & & & \\
\hline P4.4d & & & & \\
\hline P4.4e & & & & \\
\hline P4.4f & & & & \\
\hline
\end{tabular}

\section*{Denknüsse: Keilartiger Pyramiden \(\quad\) mp,}

Aus: Gementisishe Flalichen und Kioperium

Aus: Geometrische Flächen und Körper zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen"
Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Denknüsse: Keilartiger Pyramiden Amp 4.c)}

Aus: Geometrische Flächen und Körper zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Denknüsse: Keilartiger Pyramidens mp,}

\section*{Denknüsse}

\section*{Pyramidenstümpfen mit einer oberen Abschrägung}

Die nun folgenden oben zusätzlich keilartig abgeschrägten Pyramidenstumpfmodelle haben alle die gleiche quadratische Grundfläche mit \(\mathbf{a}=\mathbf{9 c m}\) und sie hatten ursprünglich die gleiche Körperhöhe \(\mathbf{H}=10 \mathrm{~cm}\).

Baue alle Modelle so, dass man beim Umdrehen der Modelle auf der Grundfläche die Beschriftung der Grundkanten sehen kann.

Die Klebefalze müssen teilweise noch flacher geschnitten werden.
Versuche, für alle 6 Modelle das Volumen und die Oberfläche zu berechnen. Zur Information und Hilfe:
Alle Schnitte wurden in halber Körperhöhe der Ausgangspyramide bzw. \(\mathbf{h}_{\text {a1 }}\) parallel zu \(a_{1}\) gleichmäßig fallend bis in Richtung \(a_{3}\) durchgeführt.
Du kommst nicht daran herum, Dir dieses Modell in Gedanken zu zerschneiden. Die einzelnen Teile lassen sich dann leichter berechnen. Welche Maße musst Du Dir erst mit dem Pythagoräischen Lehrsatz berechnen?

Stelle in einer Tabelle die Ergebnisse für die 6 Pyramidenstumpfmodelle vergleichend dar und begründe, warum sich die Ergebnisse so zeigen.
\begin{tabular}{|c|l|l|l|l|}
\hline Modell & Einzelne Volumensteile & Volumen & Mantelfläche & Oberfläche \\
\hline P4.5a & & & & \\
\hline P4.5b & & & & \\
\hline P4.5c & & & & \\
\hline P4.5d & & & & \\
\hline P4.5e & & & & \\
\hline
\end{tabular}

\section*{Denknüsse: Abgeschrägter Pyramide aim}

Denknüsse: Abgeschrägter Pyramide

\section*{Denknüsse: Abgeschrägter Pyramider}

Denknüsse: Abgeschrägter Pyramidey \(\mathrm{am}_{\text {(}}\) (5.d1)

Denknüsse: Abgeschrägter Pyramider amp (5.e1)

\section*{P4.5.f1 \\ Denknüsse: Abgeschrägter Pyramiden}

Denknüsse: Abgeschrägter Pyramide

\title{
Methodisch - didaktische Vorbemerkungen zu
}

\section*{Q) Kathetensatz und Höhensatz}

Für beide Bereiche sind die Arbeitsblätter ganz wichtig! Ohne handlungsorientiertes Lernen ist gerade hier die Behaltensrate sonst sehr gering! Für den Schneidebeweis verschiedenfarbige Kathetenquadrate eintauschen und aufkleben. Zuerst aber mit - auf normalem Papier - nachgezeichneten Quadraten probieren!

Für schwächere SchülerInnen genügt es, wenn sie wenigstens einen Lösungsweg sicher beherrschen und verstehen.

Besonders interessierten KollegInnen so etwas wie eine Pflichtlektüre mit vielen interessanten Methoden:
Lernzirkel: Der Satz des Pythagoras (ISBN 3-86072-425-8)
Autor: Hans J. Schmidt
Verlag an der Ruhr D-45422 Mühlheim an der Ruhr, Postfach 102251

Gerade die Methode des Abschneidens und Umlagerns von Teilen kann in der Geometrie immer wieder verwendet werden. Das gilt für die Berechnung von Körperoberflächen ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den Schülern analoge Vorgangsweisen bewusst zu machen.

\footnotetext{
Wichtig für die Arbeit mit den Modellen sind die ,,Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise ,,Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.
}

\section*{Erreichbare Kompetenzen im Bereich von Kathetensatz und Höhensatz}
- Ausgehend vom gleichschenkelig rechtwinkeligen Dreieck zeigen, dass der Kathetensatz gilt: \(\mathrm{a}^{2}=\mathrm{c} \times \mathrm{p}\) und: \(\mathrm{b}^{2}=\mathrm{cxq}\) und der Höhensatz: \(\mathrm{h}^{2}=\mathrm{pxq}\)
- Einprägen der verschiedenen Möglichkeiten für das Legen der Flächenteile von a \({ }^{2}\) und \(b^{2}\) auf \(c^{2}\) und damit zeigen können, dass die Summe der Flächen der Kathetenquadrate gleich groß ist wie die Summe der Rechtecke aus den Hypothenusenabschnitten mit der Seite c: \(a^{2}=c \times p\) und \(b^{2}=c \times q\).
- Erkennen, dass sich dreieckige Flächenteile durch das Vertauschen von Vorderseite und Rückseite im Drehungssinn ändern und beim Einfügen nicht mehr passen
- Durch oftmaliges Tun sicheres Beherrschen beider Lehrsätze

\section*{Der Kathetensatz im Schneidebs}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(a^{2}\) und \(b^{2}\) mit anderen Schüler gegen Quadrate in andé du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) zerschneiden musst, da genau zukleben kannst! Hier gilt zusätzlich der Auftrag, d thetensato. nde selbst, wie se also, dass \(a^{2}=c \quad x \quad p\) und dass \(b^{2}=c \quad x \quad q\). Nun klebe de aber dazu, wo \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) vorher waren. Teile dir den Pla

\section*{Der Kathetensatz im Schneidebs \\ Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(a^{2}\) und \(b^{2}\) mit anderen Schüler gegen Quadrate in andé,} du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) zerschneiden musst, ara . genau zukleben kannst! Hier gilt zusätzlich der Auftrag, d thetensatz.

Inde selbst, wie rit ihnen das \(\mathrm{c}^{2}\) an: Beweizeichne

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(b^{2}\) mit anderen Schüler gegen Quadrate in andere du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) weiter zerschyoiden mùs das \(\mathbf{c}^{2}\) genau zukleben kannst! Hier gilt zusützlich der Auf den Katheien voweisen: Beweise also, dass \(a^{2}=c \times x \quad p\) und dass \(b^{2}=c \times x\). Nun b den Flächenbewen As Heft, zeichne aber dazu, wo \(a^{2}\) und \(b^{2}\) vorher waren. Teile dir \(z\) also gut en!

\section*{Der Kathetensatz im Schneidebs}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck

\section*{0} Tausche \(\mathbf{a}^{2}\) und \(b^{2}\) mit anderen Schüler gegen Quadrate in andere. C Inde selbst, wie du mit ihnen du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) weiter zerschyoiden mus. das \(\mathbf{c}^{2}\) genau zukleben kannst! Hier gilt zusätzlich der Auf den Katheie. \(\underline{B e w e i s e ~ a l s o, ~ d a s s ~} a^{2}=c \quad x \quad p\) und dass \(b^{2}=c \quad x \quad q . \quad N u n k\) den Flächenbewé, as Heft, zeichne aber dazu, wo \(a^{2}\) und \(b^{2}\) vorher waren. Teile dir

\section*{Der Kathetensatz im Schneidebs}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(b^{2}\) mit anderen Schüler gegen Quadrate in andere du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) weiter zerschyoiden mùs das \(\mathbf{c}^{2}\) genau zukleben kannst! Hier gilt zusützlich der Auf den Kathereen roweisen: Beweise also, dass \(a^{2}=c \times x \quad p\) und dass \(b^{2}=c \times x q\). Nun \(b\) den Flächenbewen, as Heft,

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck
Tausche \(\mathbf{a}^{2}\) und \(b^{2}\) mit anderen Schüler gegen Quadrate in andere du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(b^{2}\)) weiter zerschyoiden mus,
ade selbst, wie
du mit ihnen das \(\mathrm{c}^{2}\) genau zukleben kannst! Hier gilt zusätzlich der Auf den Kathete, heweisen: Beweise also, dass \(a^{2}=c \quad x \quad p\) und dass \(b^{2}=c \quad x \quad q . \quad N u n k\) den Flächenbewé, as Heft, zeichne aber dazu, wo \(a^{2}\) und \(b^{2}\) vorher waren e dir d

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit anderen Schüler gegen Quadrate in and du die Kathetenquadrate (das sind \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\)) weiter zerschneiden , das \(\mathbf{c}^{2}\) genau zukleben kannst! Hier gilt zusützlich der Auf den Katm ride selbst, wie nit du mit ihnen Beweise also, dass \(a^{2}=c \times x \quad p\) und dass \(b^{2}=c \times x q\). Nun Heft, zeichne aber dazu, wo \(a^{2}\) und \(b^{2}\) vorher waren.
\[
\begin{aligned}
& \mathbf{a}^{2}=\mathbf{c}
\end{aligned} \mathbf{x} \quad \mathbf{p}
\]

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreieck Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit anderen Schüler gegen Quadrate in ana als ein du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) weiter zerschneiden nde selbst, wie das \(\mathbf{c}^{2}\) genau zukleben kannst! Hier gilt zusätzlich der Auf \(+\mathrm{c}_{\mathrm{he}}\) Beweise also, dass \(a^{2}=c \quad x \quad p\) und dass \(b^{2}=c \quad x q\). Nun Heft, zeichne aber dazu, wo \(a^{2}\) und \(b^{2}\) vorher waren.
\[
\begin{aligned}
& \begin{array}{lll}
\mathbf{a}^{2} & \mathbf{c} & \mathbf{p} \\
\mathbf{b}^{2}=\mathbf{c} & \times & \mathbf{q}
\end{array}
\end{aligned}
\]

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathbf{c}^{\mathbf{2}}\) und das rechtwinkelige Dreie men. Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit anderen Schüler gegen Quadra selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) zerscit, mit ihnen das \(\mathbf{c}^{2}\) genau zukleben kannst! Hier gilt zusätz Ler Auftrue.
 Teile dir den Platz also

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathbf{c}^{2}\) und das rechtwinkelige Dreie men. Tausche \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit anderen Schüler gegen Quadran selbst, wie du die Kathetenquadrate (das sind \(a^{2}\) und \(b^{2}\)) zerscit, arben. Finde mit ihnen das \(\mathrm{c}^{2}\) genau zukleben kannst! Hier gilt zusätz Her Auftro qu vetensatz
 Flächenbeweis in das Heft,

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(c^{2}\) und das rechtwinkelige Dreieck ABC \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit anderen Schüler gegen Quadrate in anderen Farben. Fl, quadrate (das sind \(a^{2}\) und \(b^{2}\)) zerschneiden musst, damit du mit ihnen das
Hier gilt zusätzlich der Auftrag, den Kathetensatz zu beweisen: \(B\) Ye also, das, \(\boldsymbol{b}^{2}=\boldsymbol{c} x \quad\) q. Nun klebe den Flächenbeweis in das \(\quad\), zeichne aber dan vorher waren. Teile dir den Platz also gut ein!

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck ABC \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit anderen Schüler gegen Quadrate in anderen Farben. quadrate (das sind \(a^{2}\) und \(b^{2}\)) zerschneiden musst, damit du mit ihnen das die Kathetenrukleben kannst! Hier gilt zusätzlich der Auftrag, den Kathetensatzzu beweisen: B Ye also, dasu, pund dass \(\underline{b^{2}=c} x \quad x \quad q\). Nun klebe den Flächenbeweis in das vorher waren. Teile dir den Platz also gut ein!

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck ABC \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit anderen Schüler gegen Quadrate in anderen Farben. F quadrate (das sind \(a^{2}\) und \(b^{2}\)) zerschneiden musst, damit du mit ihnen \({ }^{\text {a }}\).
Hier gilt zusätzlich der Auftrag, den Kathetensatz zu beweisen: B rise also, aim

\section*{Der Kathetensatz im Schneidebe}

Lass beim Ausschneiden das \(\mathrm{c}^{2}\) und das rechtwinkelige Dreieck ABC \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\) mit anderen Schüler gegen Quadrate in anderen Farben. quadrate (das sind \(\mathbf{a}^{2}\) und \(\mathbf{b}^{2}\)) zerschneiden musst, damit du mit ihnen o. Hier gilt zusätzlich der Auftrag, den Kathetensatz zu beweisen: \(B\) \(\underline{b^{2}=c} \boldsymbol{x} \quad\) g. Nun klebe den Flächenbeweis in waren. Teile dir den Platz also gut ein!

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Lösungen: Kathetensatz im Schne}

Die hier gezeigten Lösungey en natür beliebig getauscht werde sie ein gleichschenkelig-rechtwinke.
st ganz typisch für dieses. Dabei können o entweder in vig rtel oder jo zwei Vierte It werden. Nur Dreiecks and der \({ }^{\text {puadrate ist }}\). chrieben, die Be ing der ratteile kann trei gewählt
 tauschtwy gleich wr ie das \(\mathrm{b}^{2}\) geteilt werden. Die unu Suadratteile kann frei gewầ rden. adratteile N \(--\) \(\rightarrow\)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Jetzt wird \(\mathbf{a}^{2}\) in das Parallelogramm CBHD verwandelt. Dann wird unten das Dreieck CBI abgeschnitten und als Dreieck DHJ oben angefügt. Jetzt hat das neue Rechteck CIJD die gleiche Größe wie das Rechteck \(\mathbf{c}\) x p .
Die Benennungen des Dreieckes sind vorgeschrieben. Alle anderen Eckpunkte können frei benannt werden.

\section*{Der Höhensatz: Konstruktion und Schn is (1)}

Konstruktionsauftrag: Konstruiere ein rechtwinkeliges Dr thenusenabschnitt p gegeben sind.. (\(p\) ist jener Hypotheir Seite a am Eckpunkt B zusammentrifft - man könnte auch saa von a) und beweise durch Konstrution und dann dy einen Sc unterhalb din
veis, dass:

Konstruktionsvorgang:

\section*{1. Teil:}

Grundlegende Konstruktion mit Thales(halb)kreis über c. Von B aus wird \(p\) mit dem Zirkel auf cabgeschlagen.
So entstehen alle noch fehlenden Strecken und Punkte: \(\mathbf{q}, \mathrm{h}, \mathbf{C}\), b. Übrigen dieses Rechteckpxq auch

\section*{2.Teil:}

Wenn du dieses Para logramm, das durch Parallelverschieben aus dem \(b^{2}\) entstar \({ }^{-1}\) en ist (es muss mit radrat flächengle sein, da esia noch \(\begin{array}{ll}\text { immer d she Grumb } \\ \text { linie } h & \text { so groBe }\end{array}\) Höhe \(h \quad\) chneiden eines Dreil

liese. ocks ìrein Rechteck s genau die Fläche des Rechteckes aus den Hypothenusen-

\section*{Außer dic} versuchen, ell

\section*{Der Höhensatz: Konstruktion und Schn is (1)}

Konstruktionsauftrag: Konstruiere ein rechtwinkeliges Dr thenusenabschnitt p gegeben sind.. (\(p\) ist jener Hypotheir Seite a am Eckpunkt B zusammentrifft - man könnte auch saa von a) und beweise durch Konstruktion und dann du einen Sc, e, der mit der \(\mathbf{h}^{2}=\mathbf{p x}\) Konstruktionsvorgang:

\section*{1. Teil:}

Grundlegende Konstruktion mit Thales(halb)kreis über c. Von B aus wird \(p\) mit dem Zirkel auf cabgeschlagen.
So entstehen alle noch fehlenden Strecken und Punkte: \(q, h, C, b\). Übrigen dieses Rechteckpxq auch

\section*{2.Teil:}

Wenn du dieses Para logramm, das durch Parallelverschieben aus dem \(b^{2}\) entstar \({ }^{-1}\) en ist (es muss mit иаdrat flächengle sein, da equa noch immer \(g^{\prime} \quad\) che Grumb \(\begin{aligned} & \text { linie } h \\ & \text { Höhe } h \\ & \text { eines Dreic }\end{aligned} \quad\) co große eines Dreí Höhe \(h_{p}\) und

\section*{Außer dia \\ Konstruktionen kombinierten Schneidebeweis kann man auch versuchen, ell. ekten Schneidebeweis (er ist gar nicht so leicht) zu führen.}

\section*{Höhensatz: Konstruktion und Schne ou is (2)}

Konstruktionsauftrag: Konstruiere ein rechtwinkeliges Dr thenusenabschnitt \(p\) gegeben sind.. (\(p\) ist jener Hypotheir Seite a am Eckpunkt B zusammentrifft - man könnte auch Sag fegt unterhalb von a) und beweise durch Konstruktion und dann dy einen Sci_ veis, dass:

Konstruktionsvorgang:

\section*{1. Teil:}

Grundlegende Konstruktion mit Thales(halb)kreis über c. Von B aus wird \(p\) mit dem Zirkel auf cabgeschlagen.
So entstehen alle noch fehlenden Strecken und Punkte: \(\mathbf{q}, \mathrm{h}, \mathrm{C}, \mathrm{b}\). dieses Rechteck \(\mathbf{p x q}\) auch u

\section*{2.Teil:}

Als weiterer Weg ist auch die Umwandlung des Rechteckes py ein Parallelogram, Höhe q möglich: 1 wird mit \({ }^{\text {girkel dt }}\) Höhe na abgeschlage Hilfslinie des Parallelo,
d Zusätzlich

Paralle -Diagonale weg und klappt ihn nach oben, so entsteht aus den
2 Parallelog uften ein auf der Spitze stehendes Quadrat, das so groß ist wie \(\underline{h}^{2}\).

\section*{Höhensatz: Konstruktion und Schne ou is (2)}

Konstruktionsauftrag: Konstruiere ein rechtwinkeliges Dr thenusenabschnitt \(\mathbf{p}\) gegeben sind.. (p ist jener Hypotherin , der mit der Seite a am Eckpunkt B zusammentrifft - man könnte auch Sa fegt unterhalb von a) und beweise durch Konstruktion und dann dy einen Scı_ veis, dass:

Konstruktionsvorgang:
\[
\underline{h^{2}=p \times g}
\]

1. Teil:

Grundlegende Konstruktion mit Thales(halb)kreis über \(c\). Von B aus wird \(p\) mit dem Zirkel auf cabgeschlagen.
So entstehen alle noch fehlenden Strecken und Punkte: \(q\), h, C, b. dieses Rechteckpxq auch u

\section*{2.Teil:}

Als weiterer Weg ist auch die Umwandlung des Rechteckes \(p y\) ein Parallelogram, Höhe q möglich: 1 wird mit \(\quad\) Zirkel dt Höhe na obgeschlage Hilfslinie des Parallelo,
d Zusätzlich

In dieser
Paralte Diagonale weg und klappt ihn nach oben, so entsteht aus den
2 Parallelog uften ein auf der Spitze stehendes Quadrat, das so groß ist wie \(\underline{h}^{2}\).

\section*{Der Höhensatz (1)}

Beweise durch Konstruktion und dann durch das Ausschneid wandelten Fläche, dass ein Quadrat mit der Seitenlänge der \(\mathbf{B}\) wie das Rechteck pxq (wobei dieses entweder unter dem Kathe dem Kathetenabschnitt \(q\) gezeichnet werden kann - es lig qlso entw nach unten gestreckt). Du kannst selbst entscheiden, ob d \(\mathbf{p \times q}\) verwandelst oder ob du das Rechteck \(p \times q\) in d aber auf jeden Fall mit dem Zeichnen von Quadrat (\(h^{2}\)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Höhensatz (1)}

Beweise durch Konstruktion und dann durch das Ausschneid wandelten Fläche, dass ein Quadrat mit der Seitenlänge der B wie das Rechteck pxq (wobei dieses entweder unter dem Kathe dem Kathetenabschnitt \(q\) gezeichnet werden kann - es lig qlso entw nach unten gestreckt). Du kannst selbst entscheiden, ob d

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Höhensatz (2)}

Beweise durch Konstruktion und dann durch das Ausschneid wandelten Fläche, dass ein Quadrat mit der Seitenlänge der Dı dem Kathetenabschnitt \(q\) gezeichnet werden kann - es liq iso entwean der es ist nach unten gestreckt). Du kannst selbst entscheiden, ob d s Quadrat (h \({ }^{2}\)) manteck \(p \times q\) verwandelst oder ob du das Rechteck \(p \times q\) in da drat verwànelst. Beginne aber auf jeden Fall mit dem Zeichnen von Quadrat \({ }^{\left(h^{2}\right)}\)) und Rechteck (p x q).

Hier sind beide Möglichkeiten für das Rechteck p x q eingezeichnet. \(h^{2}\) kay rechts oder links \(h\) eingezeichnet werden. Von welche eck oder chem Quad, bei der Konstru,

C

\section*{Der Höhensatz (2)}

Beweise durch Konstruktion und dann durch das Ausschneid wandelten Fläche, dass ein Quadrat mit der Seitenlänge der Dı dem Kathetenabschnitt q gezeichnet werden kann - es lig lso entwed der es ist nach unten gestreckt). Du kannst selbst entscheiden, ob d s Quadrat (h \({ }^{2}\)) \(\mathrm{m}_{\mathrm{m}}\) cchteck \(p \times q\) verwandelst oder ob du das Rechteck \(p \times q\) in da drat verwardelst. Beginne aber auf jeden Fall mit dem Zeichnen von Quadrat \({ }^{\left(h^{2}\right)}\)) und Rechteck (\(\mathrm{p} \times \mathrm{q}\)).

Hier sind beide Möglichkeiten für das Rechteck p x q eingezeichnet. \(\mathrm{h}^{2}\) kay rechts oder links \(h\) eingezeichnet werden. Von welche eck oder chem Quad, bei der Konstru,

\(b^{2}\)
c

\section*{Der Höhensatz (2)}

Beweise durch Konstruktion und dann durch das Ausschnei wandelten Fläche, dass ein Quadrat mit der Seitenlänge der \({ }^{\bullet}\) wie das Rechteck \(\mathbf{p} \mathbf{x} \mathbf{q}\) (wobei dieses entweder unter dem Kathen dem Kathetenabschnitt \(q\) gezeichnet werden kann - es yalso entou oder es ist nach unten gestreckt). Du kannst selbst entscheiden, ob das Quadrat (\(h^{\prime}\) 人 Rechteck \(p \times q\) verwandelst oder \(o b\) du das Rechteck \(p x\) das \((\) uadrat vermandelst. Beginne aber auf jeden Fall mit dem Zeichn on Qua (h2) und Rechteck (p x q).

Hier sind beide Möglichkeiten für das Rechteck p x q eingezeichnet. \(\mathrm{h}^{2}\) kay rechts oder links \(h\) eingezeichnet werden. Von welche eck oder chem Quad, bei der Konstru,

\section*{Der Höhensatz (2)}

Beweise durch Konstruktion und dann durch das Ausschnei wandelten Fläche, dass ein Quadrat mit der Seitenlänge der \(\mathbf{~}\) wie das Rechteck \(\mathbf{p} \mathbf{x} \mathbf{q}\) (wobei dieses entweder unter dem Kathén dem Kathetenabschnitt q gezeichnet werden kann - es jalso entwo oder es ist nach unten gestreckt). Du kannst selbst entscheiden, ob das Quadrat (\(h^{\prime}\) 人 Rechteck \(p \times q\) verwandelst oder ob du das Rechteck \(p x\) das \(\mathbf{p}^{\text {u uadrat vernumdelst. Be- }}\) ginne aber auf jeden Fall mit dem Zeichr on Qua (har und Rechteck (p x q).

Hier sind beide Möglichkeiten für das Rechteck p x q eingezeichnet. \(\mathrm{h}^{2}\) kay rechts oder links \(h\) eingezeichnet werden. Von welche eck oder chem Quad, bei der Konstru,

c

\section*{Der Höhensatz (3)}

Beweise durch Konstruktion und dann durch das Ausschneiden
 delten Fläche, dass ein Quadrat mit der Seitenlänge der Dreieck, tenabschnitt q gezeichnet werden kann - es liegt also e der quer on qach unten gestreckt). Du kannst selbst entscheiden, ob du das \(\mathrm{p} \times \mathrm{q}\) verwandelst oder ob du das Rechteck \(\mathrm{p} \times \mathrm{q}\) delst. Beginne aber auf jeden Fall mit dem Zeichund Rechteck (\(\mathbf{p} \mathbf{x q}\)).

\section*{Der Höhensatz (3)}

Beweise durch Konstruktion und dann durch das Ausschneiden delten Fläche, dass ein Quadrat mit der Seitenlänge der Dreiecks, Rechteck pxq (wobei dieses entweder unter dem Kathetenabschnition ter dem Kathetenabschnitt q gezeichnet werden kann - es liegt also e der quer on nach unten gestreckt). Du kannst selbst entscheiden, ob du das pxq verwandelst oder ob du das Rechteck \(\mathbf{p \times q}\) delst. Beginne aber auf jeden Fall mit dem Zeichund Rechteck (\(\mathbf{p} \mathbf{x q}\)).

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Höhensatz (3)}

Beweise durch Konstruktion und dann durch das Ausschneid wandelten Fläche, dass ein Quadrat mit der Seitenlänge der \(\mathbf{B}\). wie das Rechteck pxq (wobei dieses entweder unter dem Kathe dem Kathetenabschnitt q gezeichnet werden kann - es lig olso entwo oder es ist nach unten gestreckt). Du kannst selbst entscheid or du das Quru in das Rechteck pxq verwandelst drat verwandelst. Beginne drat (\(h^{2}\)) und Recht-

\section*{Der Höhensatz (3)}

Beweise durch Konstruktion und dann durch das Ausschneid wandelten Fläche, dass ein Quadrat mit der Seitenlänge der \(\mathbf{B}\) wie das Rechteck pxq (wobei dieses entweder unter dem Kathe dem Kathetenabschnitt q gezeichnet werden kann - es lig olso entwo oder es ist nach unten gestreckt). Du kannst selbst entscheid br du das Qura in das Rechteck pxq verwandelst drat verwandelst. Beginne drat (\(h^{2}\)) und Recht-

\section*{Der Höhensatz (4)}

Beweise durch Konstruktion und dann durch das Ausschneide wandelten Fläche, dass ein Quadrat mit der Seitenlänge der D wie das Rechteck pxq (wobei dieses entweder unter dem Kati dem Kathetenabschnitt q gezeichnet werden kann - es lieg also entw nach unten gestreckt). Du kannst selbst entRechteck pxq verwandelst oder ob du das

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Höhensatz (4)}

Beweise durch Konstruktion und dann durch das Ausschneide wandelten Fläche, dass ein Quadrat mit der Seitenlänge der D wie das Rechteck pxq (wobei dieses entweder unter dem Katit dem Kathetenabschnitt q gezeichnet werden kann - es lieg*also entw or oder es ist nach unten gestreckt). Du kannst selbst ent- scheir \(\quad \mathrm{sb}\) du das \(\mathrm{Q}_{2} \quad\) in das Rechteck pxq verwandelst oder ob du das drat verwandelst. Beginne aber auf jeden Quadrat (\(h^{2}\)) und Rechteck (p x q).

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Höhensatz (4)}

Beweise durch Konstruktion und dann durch das Ausschneide wandelten Fläche, dass ein Quadrat mit der Seitenlänge der D wie das Rechteck pxq (wobei dieses entweder unter dem Katı dem Kathetenabschnitt q gezeichnet werden kann - es lie*talso enn or oder es ist nach unten gestreckt). Du kannst selbst \(\quad \begin{gathered}\text { entscheid } \\ \text { ob du d du das } Q^{2}\end{gathered} \quad\) (b2) in das Rechteck pxq verwandelst oder

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Höhensatz (4)}

Beweise durch Konstruktion und dann durch das Ausschneide wandelten Fläche, dass ein Quadrat mit der Seitenlänge der D wie das Rechteck p x \(q\) (wobei dieses entweder unter dem Katı dem Kathetenabschnitt \(q\) gezeichnet werden kann - es lie \({ }^{-t}\) also ens, er oder es ist nach unten gestreckt). Du kannst selbst
Rechteck \(p \times q\) verwandelst oder \(\quad \begin{gathered}\text { entscheid } \\ \text { ob du du das } Q_{2}\end{gathered} \quad \begin{aligned} & \text { and in das }\end{aligned}\) Rechteck pxq verwandelst oder drat verwandelst. Beginne Quadrat (\(h^{2}\)) und Recht-

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\title{
Methodisch - didaktische Vorbemerkungen zu
}

\section*{R) Kreis, Zylinder und Zylinderschnitte}

Ein wesentlicher methodischer Weg zum Verständnis der Eigenschaften des Kreises ist das Erkennen, dass der Kreis verglichen mit dem flächengleichen Rechteck oder Quadrat den kleinsten Umfang besitzt. Das angeführte Experiment mit den Schaschlik-Stäbchen (oder auch mit Gummiringerln gebündelten Farbstiften oder Bleistiften) bestätigt dies. Welche dieser 3 Flächen hat den größten Umfang? Wann dehnen sich die Gummiringerl am meisten?

Nach der Beschäftigung mit Umfang und Fläche des Kreises folgt deren Anwendung am Zylinder. Wiederum eine Provokation zum Denken ist die Beschäftigung mit dem schräg abgeschnittenen Zylinder. Haben wir eine Chance, dessen Volumen herauszufinden? Wir brauchen ihn nur in halber Höhe der schrägen Schnittfläche noch einmal waagrecht abzuschneiden und dieses keilförmige Stück nach unten klappen, dann entsteht ein Zylinder mit der durchschnittlichen Höhe. Und wie sieht es mit dieser eigenartigen Mantelfläche aus? Auch diese können wird durch diese Methode leicht in ein Rechteck verwandeln! Es ist interessant, dass diese Berechnungsvorschläge oft von sehr schwachen Schülern kommen.

Gerade die Methode des Abschneidens und Umlagerns von Teilen kann in der Geometrie immer wieder verwendet werden. Das gilt für die Berechnung von Körperoberflächen ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den Schülern analoge Vorgangsweisen bewusst zu machen.

\footnotetext{
Wichtig für die Arbeit mit den Modellen sind die ,Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise „Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.
}

\section*{Erreichbare Kompetenzen}

\section*{im Bereich von Kreis, Zylinder und Zylinderschnitte}
- Sicher wissen: Je regelmäßiger eine Fläche - bei gleichem Umfang - ist, desto
- größer ist ihr Flächeninhalt.
- Bei Körpern gilt sinngemäß: Je regelmäßiger der Körper - bei gleicher Oberfläche -
- ist, desto größer ist sein Volumen.
- Zylinder und Prismen mit Innenbohrung mathematisch deuten können
- Für einen schräg geschnittenen Zylider:
- a) die Konstruktion der wahren Größe der Schnittfläche beherrschen
- b) die 2 Möglichkeiten zur Berechnung des Volumens erklären können:
- das Schrägstück in halber Höhe abschneiden und herunterklappen
- ein zweites gleiches Modell darüberstellen, so dass \(\mathbf{h}\) und \(\mathbf{H}\) übereinander zu stehen kommen
- Beide Varianten veranschaulichen die Volumsformel
- Die Fläche der Abwicklung des Zylindermantels (ohne Integralrechnung!) als
- Rechteck verstehen und das begründen können
- Kreisbogenpolygone kennenlernen

\title{
Kreis, Quadrat und Rechteck im F und Umfangvergleich
}

\author{
Ein interessantes Experiment mit Schaschlikstäb on aus _ nermarkt:
}

Du findest die Stäbchen \((\mathrm{d}=3 \mathrm{~mm})\) zu 100 Stück in einer slister \({ }^{\text {ryung im } \mathrm{Re}_{\mathrm{g}} \text { _Sie sind }}\) dabei in eine quaderförmige Folienbox gepackt und in dauf der ergrundkarton geklebt. Die Länge ist nicht von Bedeutung, die Breite b mm y ie Tiefy 22 mm . B

Du kannst dir leicht ausrechnen, wén Umfant eäbchen in der Box haben: \(U=2 b+2 t=2 \times 40 \mathrm{~mm}+2 \times 22 \mathrm{~mm}=124 \mathrm{~mm}\)
a)

Nimm nun die Stäbchen aus die einem Faden, den du 5 x u
 wäre es mit einem feinen Drah
Welche Form nimmt das Bünder enn! Es ist eis! Wieviel mm Schnur oder Draht hast du für die 5 K fänge gebra wieviel mm misst daher 1 Umfang? Vergleiche mit dem UmI rar Indusung ang!
b)

Leg die 100 Stäbchen dicht nebo Jer in nur einer einzelnen Reihe auf ein schmales Paketzierband das du auf der eite dann wieder zum Anfang hin zurückführst. Wieviel mm S Us ist praktise Umfang des nun ganz flachen Rechteckes, das die gleiche Fläcio -aft) sind notwendig? Vergleiche mit dem Umfang bei der Industrieporkung!
c)

Schneide ' tonstück (Schuhschachte) veschiedene Quadratlöcher, in die du die 100 Stà Su ieviel mm Seitenlänge misst jenes Quadrat, in das gerade noch alle 100 Stäb ges erden können. Vergleiche mit den anderen Umfängen! liche Versuche auch mit einer bestimmten Menge anderer Rundrm hat bei gleicher Fläche den kleinsten Umfang und welo. m hat bei gleicher Fläche den größten Umfang?

\title{
Kreis, Quadrat und Rechteck im F und Umfangvergleich (2)
}

Hier ist eine große Menge von Kreisplättchen, die in geometrische Fig eichem Umfang gegeben werden sollen. Alle diese Figuren haben \(24 \mathrm{~cm} \mathrm{Umf} \quad\) In welcı sqnggleichen Figuren passen die meisten?

Der untere Blattteil wird abgetrenn Form kannst du die meisten Kreise se, \(\qquad\) s Löcher herausgeschnitten. Durch welche b bei gleichem Umfang die größte Fläche?

\title{
Kreis, Quadrat und Rechteck im F und Umfangvergleich (2)
}

Hier ist eine große Menge von Kreisplättchen, die in geometrische Fig، deichem Umfang gegeben werden sollen. Alle diese Figuren haben 24 cm Umf In welcin Figuren passen die meisten?

Form kannst du die meisten Kreise sè._ orche Form bleichem Umfang die größte Fläche?

Geschlossener Zylinder

\title{
Geschlossener Zylinder
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Geschlossener Zylinder

Geschlossener Zylinder

\section*{Geschlossener Zylinder \(\mathrm{r}=\)}

\section*{Walze mit Bohrung}

\section*{Walze mit Bohrung}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Dickwandiges Rohrstück (1)}

\section*{Dickwandiges Rohrstück (2)}

\section*{Dickwandiges Rohrstück (2)}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Quadratischer Quader mit Bohrung}

\section*{Quadratischer Quader mit Bohrung}

\section*{Rechteckiger Quader mit Bohrung}

Boden- und Deckfläche
Mantelflächen

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körrer zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Die Flächen an einem schräg geschnittene}

Wenn du die Idee aus dem Blatt R 6.2 auch hier anwendest, ist es wieder nicht
, das Vo

\section*{Die Flächen an einem schräg geschnittene}

Wenn du die Idee aus dem Blatt R 6.2 auch hier anwendest, ist es wieder nicht
, das Vo

\section*{Die Flächen an einem schräg geschnittene}
Wenn du die Idee aus dem Blatt R 6.2 auch hier anwendest, ist es wieder nicht
, das Vo

\section*{Elliptische Dose (1)}
aie Berechnung des Umfanges einer Ellipse gibt es nur Näherungsformel. Die Länge der beiden Halbachsen a und b ist dabei entscheidend. Du findest die Formel samt einer direkten Berechnungsmöglichkeit im Internet z.B.unter >www.mathematik.ch/anwendungenmath/ellipsenumfang/< Wegen der Länge des Umfanges \(\mathbf{(2 5 , 5 3} \mathbf{~ c m}\))wurde er in zwei Hälften gezeichnet. Überlege dir, wo die besten Plätze für die Schnittstellen sind.

\section*{Elliptische Dose (1)}

\title{
Doppelt schräg geschnittener Runds
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Doppelt schräg geschnittener Rundsta}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Globus mit Edelstahlringen Durchmess} Globus: Durchmesser 30 cm

\section*{Äqatorumfang}
des
G10hus:
Umfang 1. Ring: \(\begin{array}{ll}194,2 \mathrm{~cm}+\text { Vor- und N N } & \text { uff für duu } \\ 32,4 \mathrm{~cm} / 64,7 \mathrm{~cm} / 97,0 & 129,4 \mathrm{~cm} / 1\end{array}\) 4, \(2 \underset{\text { rrichtung }}{\mathrm{c} \text { m }}\) Markierungen bei: \(0 \mathrm{~cm} / 32,4 \mathrm{~cm} / 64,7 \mathrm{~cm} / 97,0 \quad 129,4 \mathrm{~cm} / 10, \quad 4,2 \mathrm{~cm}\) Umfang 2. Ring: \(294,2 \mathrm{~cm}+\) Vor- un chlauf die Biegevorrichtung Markierungen bei: \(0 \mathrm{~cm} / 49,0 \mathrm{~cm} / 98,05 \mathrm{~cm} \quad 1 \mathrm{~cm} / \quad \mathrm{cm} / 245^{\circ} / 294,2 \mathrm{~cm}\)

\section*{Länge der 3 Stäbe:}
je \(93,7 \mathrm{~cm}+2 \mathbf{x}\)
Die Bohrungen für den ersten Stab liegen genay uf des, oberhalb und für den 3 . Stab 5 mm unterhalb vorstehen lassen und in dieser Position mit Ilagepunkt des ersten Ringes im Abstand 15,9 rungspunkt müssen die Markierungspun quators. D cage de eren Kreises Der 2. Ring wird ganz außen auf den Stä' Die Bohrungen für die Auflagestäbe kö das Loch unten am Globus es erlaubl, Stäbe jewes, Ias gegenüberliegende Bohrloch
zu führen.

Zunahme des Radius um rund \(15,9 \mathrm{~cm}\) pro eingefügtem Meter Zunahme des Durchmessers (\(0,318 \mathrm{~m} \times \mathrm{Pi}=1 \mathrm{~m}\)). Die gleiche enn \(w\) in Gedanken dem Erdumfang 1 Meter einfügen!!!
stner: Manfred Pfennich Tel.: 06503145356
g: Metallbau-Schlosserei Bernsteiner GmbH, Voitsberg
Tel.: 03142-223640 Mail: office@metall-bernsteiner.at oder ein Betrieb in Ihrer Nähe

 punkt zum gen in sehr eigenartiges Rollverhalten: Der Abstand vom Auflageöchs kt - also der Durchmesser der Rolle - ist immer gleich. Wie

erstärke die Polygonfläche innen mit Karton und rolle für das ste zu einer "Lagerhülse" zusammen. Fülle das Kreisbogeneitungspapier.
Besonders das Verhalten der Achse zu sehen, wenn Du gleich 2 Kreisbogenpolygone auf einer ca 30 en Achse montierst.

\section*{Kreisbogenpolygone: Kreisboge Die Kreisbögen}

\section*{Kreisbogenpolygone: Kreis
Die Kreisbögen}

 verhält s Uchse, weıırou das Kreisbogenpolygon ,rollst"?
Beim Zusa torstärke die Polygonfläche innen mit Karton und rolle für das Achsenloch (rkan zu einer "Lagerhülse" zusammen. Fülle das Kreisbogenpolyonon mit zen spapier.

\section*{Kreisbogenpolygone: Kreisboge}

\section*{Kreisbogenpolygone: Kreisb
Die Kreisbögen}

\section*{Kreisbogenpolygone: Kreisbogen}

Kreisboge punkt zum g hou unkt - also der Durchmesser der Rolle - ist immer gleich. Wie verhält sich ab Achis h Du das Kreisbogenpolygon „rollst"?

Kreisboge
ein sehr eigenartiges Rollverhalten: Der Abstand vom Auflagepunkt zum g hou ?unkt - also der Durchmesser der Rolle - ist immer gleich. Wie verhält sich aba Achsu ol Du das Kreisbogenpolygon „rollst"?
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}

\section*{Kreisbogenpolygone: Kreisbogen Die Kreisbögen}

 punkt zun ton Punkt - also der Durchmesser der Rolle - ist immer gleich. Wie verhält sich diè venn Du das Kreisbogenpolygon ,rollst"?
Beim Zusamm en die Polygonfläche innen mit Karton und rolle für das Ag h Kopı, tonrest zu einer "Lagerhülse" zusammen. Fülle das KreisbogenScion Zeitungspapier. \(\quad\) Ialten der Achse zu sehen, wenn Du gleich 2 Kreisbogenpolygone auf enn cm langonchse montierst.

Kreisbog punkt zun. verhält sich Beim Zusamm

Ag K Kopı tonresiv zu einer "Lagerhülse" zusammen. Fülle das KreisbogenZeitungspapier.
Ialten der Achse zu sehen, wenn Du gleich 2 Kreisbogenpolygone Achse montierst.

\section*{Kreisbogenpolygone: Kreisbogen Die Kreisbögen}

\title{
Methodisch - didaktische Vorbemerkungen zu
}

\section*{S) Kegel und Kegelstumpf}

Interessant sind bei den Kegeln die Überlegungen, wann der Kegelmantel das Aussehen eines Halbkreises (oder eines \(1 / 3\) - bzw. \(2 / 3\) - Kreises) hat. Das hängt doch irgendwie mit dem Durchmesser des Kegels und seiner Höhe zusammen!

Beim Kegelstumpf gelten die gleichen Überlegungen wie bei den Pyramidenstümpfen:
Wenn ich einen Kegel in halber Höhe abschneide, habe ich dann das halbe Volumen weggeschnitten? Das kann es wohl nicht sein, wenn man die beiden Teile Kegelstumpf und Spitze miteinander vergleicht! Der Zugang ist der Vergleich des Basisdurchmessers des großen Kegels mit jenem der abgeschnittenen Spitze. Die Spitze hat den halben Durchmesser, also den halben Radius, und daher (\(1 / 2 \mathrm{mal} 1 / 2\) wegen \(\mathrm{r}^{2}\)) und die \(1 / 2\) Höhe und daher nur mehr \(1 / 8\) des gesamten Volumens. Der Kegelstumpf hat also 7/8 des Volumens des gesamten Kegels.

Schneiden wir einen Kegel im oberen Drittel ab, so hat die Spitze (\(1 / 3 \mathrm{mal} 1 / 3 \mathrm{mal} 1 / 3\)) also nur mehr 1/27 des Gesamtvolumens, bzw. 26/27 des Volumens hat der Sockel.

Wie ist die Relation der beiden Oberflächen zueinander? Warum passt das hier nicht so? Ach ja: Da ist ja die neue Deckfläche des Kegelstumpfes, die hier noch dazugerechnet werden muss! Außerdem gilt bei den Mantelflächen nur der halbe Radius bzw. 1/3 des Radius.

Gerade die Methode des Abschneidens und Umlagerns von Teilen kann in der Geometrie immer wieder verwendet werden. Das gilt für die Berechnung von Körperoberflächen ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den Schülern analoge Vorgangsweisen bewusst zu machen.

\footnotetext{
Wichtig für die Arbeit mit den Modellen sind die „Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise „Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.
}

\section*{Erreichbare Kompetenzen}

\section*{im Bereich Kegel und Kegelstumpf}
- Sicheres Beherrschen der Volums- und Oberflächenformel des Kegels
- Den Zusammenhang zwischen dem Mantelumfang und seiner Form (z.B. Halbkreis..) rechnerisch begründen können. Welche Rolle spielen hier die Mantellinie s und der Radius der Grundfläche?
- Bei der Berechnung von Kegelteilen (z.B. \(3 / 4\) - Kegel...) geht es um das sichere Beherrschen des Spiels mit der selbst erstellten Formel
- Bei den Kegelstümpfen geht es (als interessante Anwendung des Strahlensatzes) um das Verhältnis des Volumens des Stumpfes zur abgeschnittenen Spitze
- „Beweis" der Volumenformel mit dem selbst gebauten Füllkörper

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Kegel 2}

\section*{Maße des Kegels:}
\begin{tabular}{ll}
\(\mathbf{r}=\) & cm \\
\(\mathbf{s}=\) & cm \\
\(\mathbf{H}=\) & cm
\end{tabular}

Auch beim
Kegelmantel wird der Streifen für die Klebefalze etwa alle 3 bis 4 mm eingeschnitten und

\section*{Kegel 2}

Maße des Kegels:
\begin{tabular}{ll}
\(\mathbf{r}=\) & cm \\
\(\mathrm{s}=\) & cm \\
\(\mathbf{H}=\) & cm
\end{tabular}

Auch beim
Kegelmantel
wird der Streifen
für die Klebefalze
etwa alle 3 bis 4 mm
eingeschnitten und dann umgeknickt.

Wenn du dir diese Bauteile anschaust,
vannst du dir überlegen, warum hier Mantel ein Halbkreis ist. Was spielt mit eine Rolle?
er welcher Bedingung wäre der antel ein Drittelkreis?

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Ein 1/2 - Kegel (1)}

Maße des Kegels:
\(\mathrm{r}=4 \mathrm{~cm}\)
\(\mathrm{s}=\mathbf{8} \mathbf{~ c m}\)

 Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Ein 1/2 - Kegel (2)}

\section*{Maße des Kegels: \\ \(\mathrm{r}=6 \mathrm{~cm}\) \\ \(\mathrm{s}=8 \mathrm{~cm}\) \\ \(\mathrm{H}=5,3 \mathrm{~cm}\) \\ }

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Ein 3/4-Kegel (1)}

\section*{Maße des Kegels:}
\(\mathrm{r}=4 \mathrm{~cm}\)
\(\mathrm{s}=\mathbf{8} \mathbf{~ c m}\)
\(\mathrm{H}=7,75 \mathrm{~cm}\)

\section*{Ein 3/4 - Kegel (1)}

Maße des Kegels:
\(\mathrm{r}=4 \mathrm{~cm}\)
\(\mathrm{s}=\mathbf{8} \mathbf{~ c m}\)
\(\mathrm{H}=7,75 \mathrm{~cm}\)

Auch beim Kegelmantel wird der Streifen für die Klebefalze etwa alle 3 bis 4 mm eingeschnitten und dann umgeknickt.

\section*{Ein 3/4 - Kegel (2)}

Maße des Kegels: \(\mathrm{r}=4 \mathrm{~cm}\)
\(\mathrm{s}=\mathbf{8} \mathbf{~ c m}\) \(\mathrm{H}=7,75 \mathrm{~cm}\)

Auch beim Kegelmantel wird der Streifen für die Klebefalze etwa alle 3 bis 4 mm eingeschnitten und dann umgeknickt.

\section*{Ein 3/4 - Kegel (2)}

Maße des Kegels:
\(\mathrm{r}=4 \mathrm{~cm}\)
\(\mathrm{s}=\mathbf{8} \mathrm{cm}\)
\(\mathrm{H}=7,75 \mathrm{~cm}\)

Auch beim Kegelmantel wird der Streifen für die Klebefalze etwa alle 3 bis 4 mm eingeschnitten und dann umgeknickt.

Aus: Geometrische Flächen und Körper zum "Be-grefen" © ManfredPfentich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Ein Kegel verliert in halber Höhe}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Ein Kegel verliert seine Spitze im un ond ittel}

Die Deckfläche für diesen abgeschnittenenen Kegel findest du auf dem nächsten Arbeitsblatt

\section*{Ein Kegel verliert seine Spitze im un oittel}

Die Deckfläche für diesen abgeschnittenenen Kegel findest du auf dem nächsten Arbeitsblatt

\section*{Die abgetrennten Kegel - Spi}

\section*{Die abgetrennten Kegel - Spi}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Kegel: Ein einfacher Beweis für die Volur asio el}

 sammen. Dann schneide Clebefalze an Crücke den Kegel auf dem Tisch nieder, die Klebefalze spreizen sion, ou außen. jetzt werden die Klebefalze des Kegels nach oben gebogen und auf der Innenwand un lers angeklebt. Dabei muss der Zylindermantel zuerst zum Krümmen über di \(\bullet\) Tischkante gezogen , werden. Von inn \(\quad\) die Klebefalz wird zum Festigen and Rand linders außen ein ca. 2 cm breiter Streifen aufgeklebt.

Der Volu ird durch arav outlen mit Hirse geführt:
Das fertige \(\square\) Zuerst wird der Kegel wird mit Hirse gefüllt und sein Volumen wird mit einer Mens vess yird das Volumen des restlichen Zylinders gemessen:

Dé Thar eirerher Grundfläche und gleicher Höhe nur \(1 / 3\) des Volumens camten Zylinders.

\title{
Kegel: Ein einfacher Beweis für die Volur asto el
}

 sammen. Dann schneide elebefalze an Drücke den Kegel auf dem Tisch nieder, die Klebefalze spreizen sion sh außen. jetzt werden die Klebefalze des Kegels nach oben gebogen und auf der Innenwand a vers angeklebt. Dabei muss der Zylindermantel zuerst zum Krümmen über di \(\checkmark\) Tischkante gezogen , werden. Von inn wie Klebefalz wird zum Festigen and Rand linders außen ein ca. 2 cm breiter Streifen aufgeklebt.

Der Volur ird durch aro rutulen mit Hirse geführt:
Das fertige \(\quad\) Zuerst wird der Kegel wird mit Hirse gefüllt und sein Volumen wird mit einer Mens vesso vird das Volumen des restlichen Zylinders gemessen:

\section*{Methodisch didaktische Vorbemerkungen zu}

\section*{T) Die Kegelschnitte}

Hier wird einmal versucht, die Konstruktion der Kegelschnittlinien durch Kreuz-, Aufund Grundriss und anschließende rechtwinkelige Projektion seitlich nach außen zu zeigen und verständlich zu machen. Diese Konstruktionen sind nämlich interessanterweise in keinem Lehrbuch für Geometrisches Zeichnen (GZ) / Darstellende Geometrie (DG) / Technisches Zeichnen (TZ) zu finden, ebenso wenig aber auch im Internet.

Besonderer Wert ist bei den SchülerInnen darauf zu legen, dass es bei den Kegelschnitten meistens nicht um die Schnittflächen sondern um die entstehenden Schnittlinien geht!

Um für Demonstrationsmodelle vollständige geschnittene Kegel samt ihren abgeschnittenen Teilen zu bauen, kann auch der abgeschnittene Teil aus den Kopiervorlagen zusammengebaut werden. Zur besseren Aufbewahrung der beiden Teile empfehle ich aber, über die beiden Teile einen nach unten offenen Kegel gleicher Größe (wie einen Hut) darüber zu geben.

\section*{Die Kegelschnittlinien}

\section*{Erreichbare Kompetenzen}

\section*{im Bereich der Kegelschnitte}
- Sicheres Beherrschen des Aussehens der verschiedenen Kegelschnitte
- Kegelschnitte selbst unter Verwendung der hier vorliegenden Konstruktionsanleitungen nach eigener Wahl konstruieren können
- Die kulturgeschichtlich interessanten Konstruktionen Albrecht Dürers betrachten und seinen Konstruktionsweg darlegen können. Auch seine Textinformationen sind es wert, dass man sie zu lesen versucht.
- Da die Hyperbel heute im Unterricht vorzugsweise nur berechnet wird, hilft das Bauen eines Doppelkegels mit Hyperbelschnitten sehr zum Verständnis der Koordinatentransformation. Diese mit dem Doppelkegel anschaulich darstellen können

\section*{Kegelschnitt: Die Ellipsenkonstry 101)}

\section*{Kegelschnitt: Die Ellipsenkonstry}

\section*{Kegelschnitt: Die Ellipsenkonstry \(10 n\)}

Unser Kegelmodell hat einen Radius von 7 cm , eine Höhe voir schräge Schnitt zur Entstehung der Ellipse führt. Die B0 änge des ~ \(\quad\) ntspricht dem Umfang des Zylinderbodens.

Der volle Kreis (\(\mathbf{3 6 0}^{\circ}\)) mit dem Radius des Kegelmar leicht errechnen, dass die 44 cm rund \(137^{\circ}\) entsprechen. \(U=d \quad=2\) die Schnittfläche mit der ellipsenförmigen Schnit zum Mantelbogen werden dazu entsprechend jg Schnittfläche) aufgetragen, an denen die Schn wird. Die Ellipse scheint vorerst total verzer alle \(10^{\circ}\) Projei
 cm Umf Also läßt sich ier erry ien Mantel ist zum Kegelmantel erscheint die wahre Schy Schnittkantengestalt. 1 der Spitze bis

Aus: Geometrische Fläcien und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@anan.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Kegelschnitt: Die Ellipsenkonstr}

Unser Kegelmodell hat einen Radius von 7 cm , eine Höhe voir

\section*{0} schräge Schnitt zur Entstehung der Ellipse führt. Die Bo änge des tell bevor der ntspricht dem Umfang des Zylinderbodens.

Der volle Kreis (\(\mathbf{3 6 0 ^ { \circ }}\)) mit dem Radius des Kegelman leicht errechnen, dass die 44 cm rund \(137^{\circ}\) entsprechen. \(\mathrm{U}=\mathrm{d} \quad=2 * 7 * \pi=44, \quad 8 \mathrm{~cm})\) die Schnittfläche mit der ellipsenförmigen Schnit zum Mantelbogen werden dazu entsprechend jg Schnittfläche) aufgetragen, an denen die Schn wird. Die Ellipse scheint vorerst total verzer zum Kegelmantel erscheint die wahre Schy Schnittkantengestalt.

\title{
Albrecht Dürer (1471-1528) hat 1525 in frühneuhochdeu \\ Konstruktionsgang des Kegelschnittes zur Entstehu beschrieben und in seinem Lehrwerk veröff cht: "Underweysung der Messung, mit dem Zirckel und F scheyt
} Ebenen unnd gantzen corpor

Die alten haben angetzeigt / das man dreyerley schnydt durch eimag thu \({ }^{\circ} \mathrm{n} /\) die da vnderschydlich von einander sind vnnd die mit der \(\quad 8\) des keg gleyche zirckellini haben / sonst mag man den kegel in der \(n\) on eynnander n / der wirdt geformbt wie der kegel / des acht man auch Abe andern day schnyt machen / ytlicher ein sondre lini / die selben linier ich ly ufreissen / Den ersten schnyt heysen die gelerten Elipsis / der schnei en ke chleym ab/vnnd nymbt dem fuß des kegels nichtz weg / Dise or ayt may einer seyten ho \({ }^{e}\) her / an der andern nydrer genu \({ }^{\mathrm{e} m e n}\) werden \(/\) on sey eher vnnd die ander weyter \(\mathrm{zu}^{\circ}\) jrem fuß hat/Der ander sc ist jman barlini/mit der seyttenn des kegels a.b. oder vmb kert gan will gelerten Parabola nennen / Der dritt schnyt ist im aufreisse vnn aufrechte barr, mit der lini die da auß dem Centrum des kegels fuß vber \(\quad\) genn wirdet / in des kegels spitz .a. Den nennen sie Hiperbole / diser dy amen weis jch auf deutzsch nit \(\mathrm{zu}^{\mathrm{o}}\) sagenn / wir wo \({ }^{\mathrm{e}}\) llenn jn aber n gebeñ man sie kennen mu \({ }^{\mathrm{e}} \mathrm{g} / \mathrm{Die}\) Elipsis will jch ein eyer lini nennen / arumb das sia einem ey gleich ist / Die Parabola sey genennt eyn brenn lini / darumb so man 13 jr ein spiegel macht so \(z u^{e}\) ndt sie an / Aber die Hiper \(\quad 1\) jch einn gabellini nennen / Nun so jch auf reissenn will die eyer lini El uß jour den kegel aufreissen / vnnd den schnyt darinn antzeigenn / de eichen darunder machen dem thu \({ }^{\circ}\) jch also / Des kegels spitz sey oben aufrechte lini herab / vnd d disen schnyt.f.g. teil jch mit en in 12 vnder disem kegel reif ich seyn grund seyn zirckellini / wie / aufrecht / So nun auß allen punckten aufrecht linien von jm herab fallo grundt so durch schneyden dise linien / als .f.g. vnd die zaln die darzwischen sitm etc. den zirckelry \(\beta\) / die betzeichen jch auch mit jren bustaben vnd zifern / So dà aht ist alßdann nym jch ein zirckel/vnd setz jn im kegel mit \(\quad\) ein fuß in dr frechte lini a. in der ho \({ }^{e}\) ch des schlemen schnydes.f.g. sten .1. vnd ser ho \({ }^{\text {e }}\) ch setz jch den zirckel/mit dem andrn fuß / herauß an dio vnnd \(\quad\) dise weyten mit dem zirckel/ vnd drag sie in den nyder druckten \(\quad Z\) den ein fuß des zirckels / in den Centrum .a. vnd den die gestrackt lini 1 . vnd reiß rund hynauß gegen dem.d. der lini.1. Darnach setz jch den zirckel wider mit dem ein fuß in den kegel tini a. in der ho \({ }^{\mathrm{e}}\) ch des punckten .2. des schnydes .f.g. vnd den andern for roni a.d. vnd trag die selb weite wider in den grund / vnd sety zirckel on füs hs Centrum a. vnd den andern fuß auff die gerad lini 2 gegen dem .d. biß wider auff die gerad lini .2. Also thu \({ }^{\circ}\) jch im lini dras \(\quad\) ab / vnnd reiß im grund rund herum / auß dem Centrum .a. von der vten .5.gegen dem /d/ biß wider \(\mathrm{zu}^{0}\) diser lini \(/ 5 /\) Also thu \({ }^{0}\) jch jm darnach dura ntzen zal / drag all ding auß dem o \({ }^{\text {ebern kegel in grundt / Darnach }}\)

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Kegelschnitte: Die Ellips Großes Modell}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott

\title{
Kegelschnitte: Die Ellips Großes Modell
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Kegelschnitt mit Ellipse: Die abgesch cte}

\section*{Kegelschnitte: Die Ellips Kleines Modell}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
Kegelschnitte: Die Ellips Kleines Modell
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körrer zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Kegelschnitt: Die Ellipsenkonstry 101)}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Kegelschnitt: Die Ellipsenkonstry 101)}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Kegelschnitte: Die Ellipse Großes Modell}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Kegelschnitte: Die Ellipse Großes Modell}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

 Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Aufbewahrungskegel für die orr Kegelschnitt-Modelle (T) \\ Kegelrest und Kegelabschnitt werden zusammengefügt u} wird einfach wie ein Hütchen darübergestülpt. Für alle 5 M Kapitels T ist der Aufbewahrungskegel gleich groß, da/'5 Keger Größe haben: \(\quad \mathrm{r}=\mathbf{7 0} \mathrm{mm} \mathrm{h}=170 \mathrm{~mm} \quad \mathrm{~s}=184 \mathrm{~mm}\)

\section*{Aufbewahrungskegel für die Kegelschnitt-Modelle \(\left.{ }^{(}\right)\)}

Kegelrest und Kegelabschnitt werden zusammengefügt u wird einfach wie ein Hütchen darübergestülpt. Für alle Kapitels T ist der Aufbewahrungskegel gleich groß, da/'s Keged AIrungskegel Größe haben: \(\quad \mathrm{r}=\mathbf{7 0} \mathrm{mm} \mathrm{h}=170 \mathrm{~mm} \quad \mathrm{~s}=184 \mathrm{~mm}\)

\section*{Aufbewahrungskegel für die oir Kegelschnitt-Modelle (7)}

Kegelrest und Kegelabschnitt werden zusammengefügt uir wird einfach wie ein Hütchen darübergestülpt. Für alle großen Kapitels T ist der Aufbewahrungskegel gleich groß, da all ßen Kege Größe haben: \(\quad \mathrm{r}=\mathbf{7 0} \mathrm{mm} \mathrm{h}=170 \mathrm{~mm} \mathrm{~s}=184 \mathrm{~mm}\)

\section*{Aufbewahrungskegel für die on Kegelschnitt-Modelle (T) \\ Kegelrest und Kegelabschnitt werden zusammengefügt uin} wird einfach wie ein Hütchen darübergestülpt. Für alle großen Wahrungskegel
itt-Modelle des
die gleiche Kapitels T ist der Aufbewahrungskegel gleich groß, da all Ben Kegé

\title{
Aufbewahrungskegel für die Kegelschnitt-Modell
}

Kegelrest und Kegelabschnitt werden zusammengefügt una , ahrungskegel wird einfach wie ein Hütchen darübergestülpt. Für alle kleinen K a *t-Modelle des Kapitels T ist der Aufbewahrungskegel gleich groß, da alle den Keger_ lie gleiche Größe haben: \(\quad r=50 \mathrm{~mm} \mathrm{~h}=121 \mathrm{~mm} \mathrm{~s}=131 \mathrm{~mm}\)

Diesen Klebefalz abschneiden und am unteren Rand des Kegelhütchens (aber erst nach dem Zusammenkleben des Kegels) zur Verstärkung innen ankleben

\section*{Aufbewahrungskegel für die Kegelschnitt-Modely}

Kegelrest und Kegelabschnitt werden zusammengefügt und wird einfach wie ein Hütchen darübergestülpt. Für alle kleinen Ka Kapitels T ist der Aufbewahrungskegel gleich groß, da alle den Keger-
Größe haben: \(\quad r=50 \mathrm{~mm} \mathrm{~h}=121 \mathrm{~mm} \mathrm{~s}=131 \mathrm{~mm}\)

Diesen Klebefalz abschneiden und am unteren Rand des Kegelhütchens (aber erst nach dem Zusammen-

\section*{Kegelschnitte: Die Parabelkonst}

Die Konstruktion der Dandelinschen Kugel (G.Pierre Dandelin) im Kegel erfolgt durch den Schnittpunkt der Winkelsymmetrale. Dieser ist der Mittelpunkt der anliegenden
 gel mit der Parabelfläche ist der Brennpunkt der Parabel.
eslign
 der Kog ittfläche.

Der Grundriss \(\mathrm{Ze}_{2}\) aus ogelp spektive den Verlauf de oelschn kante über der kreisförmıgen Grur fläche.
länge.
Der Kreuzriss zeigt die wahreßreite
und Höfoder Parabel, verkürzt aber
noch ihre wirkliche Schnittkanten- \(\qquad\)
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Kegelschnitt: Die Parabelkonst ctic}

Unser Kegelmodell hat einen Radius von 7 cm , eine Höhe vo Seitenkante von \(\mathbf{1 8 , 3 8} \mathbf{~ c m}\), das ist zugleich der Radius des Kege des Mantels entspricht dem Umfang des Zylinderbodens
\[
\mathrm{U}=\mathrm{d} * \pi=2 * 7 * \pi=44 \mathrm{~cm}(4 \quad \mathrm{~cm})
\]

Der volle Kreis (\(\mathbf{3 6 0}^{\circ}\)) mit dem Radius des Kegelman leicht errechnen, dass die 44 cm rund \(137^{\circ}\) entsprecin hier er eeten Mantel ist die Schnittfläche mit der parabelförmigen Schnj*tkante schneid sie ist hier nach unten versetzt zu finden!) Von der Spitze bis zum telbogelin tsprechend jeweils alle \(10^{\circ}\) Projektionswinkel (von den \(180^{\circ}\) der Sc ä̈che) aufgetras enen die Schnitthöhe abgeschlagen wird. Die Parabel scheint vore czerrt zu sein. Erst on Zusammenrollen des Mantels zum Kegelmantel erscheint die shittflächen- bzw. Schnittkantengestalt. Die hier unten zusätzlich vorliegende Sch âcı. tung ist nur da, um den Konstruktionsgang klarzustellen.

\section*{Kegelschnitt: Die Parabelkonst אitio}

Unser Kegelmodell hat einen Radius von 7 cm , eine Höhe vo Seitenkante von \(\mathbf{1 8 , 3 8} \mathbf{c m}\), das ist zugleich der Radius des Kege des Mantels entspricht dem Umfang des Zylinderbodens
\[
\mathrm{U}=\mathrm{d} * \pi=2 * 7 * \pi=44 \mathrm{~cm}
\]

Der volle Kreis (\(\mathbf{3 6 0}^{\circ}\)) mit dem Radius des Kegelman leicht errechnen, dass die 44 cm rund \(137^{\circ}\) entsprecin hier er eten Mantel ist die Schnittfläche mit der parabelförmigen Schni'tkante schneid Sie ist hier nach unten versetzt zu finden!) Von der Spitze bis zum telbogeli_ tsprechend jeweils alle \(10^{\circ}\) Projektionswinkel (von den \(180^{\circ}\) der Sc abgeschlagen wird. Die Parabel scheint vore
(äche) aufgetras enen die Schnitthöhe zerre Mantels zum Kegelmantel erscheint die shittflächen- bzw. Schnittkantengestalt. Die hier unten zusätzlich vorliegende Sch âcun vilung ist nur da, um den Konstruktionsgang klarzustellen.

\title{
Albrecht Dürer (1471-1528) hat 1525 in frühneuhoch \(S\) \\ Konstruktionsgang des Kegelschnittes zur Entstehuirg bel beschrieben und in seinem Lehrwerk y öffentlicu "Underweysung der Messung, mit dem Zirckel und Ric heyt, in Linio gantzen corporen'
}

Die Parabola ist gleicher weiß \(\mathrm{zu}^{0}\) machen / als die E vnd darinn die aufecht lini .a. vnd schneid das parabel / also das diser schnyt / ein barlini sey gegen des vnden .g.h. Darnach teil jch .f.g.h. mit eylf puy durch all punckten in .f.g.h. vnd die so auf d yten sten gegen .a.a. selben zwerch linien zeu \({ }^{\text {e ch }}\) jch von der aufrechten .a an des kege seyten .a.d. Aber die an der andern seiten sten die zeu \({ }^{\mathrm{e}} \mathrm{ch}\) jch von der aufrechten a. a des kegels .a.b. darnach mach ich den grund des kegels vnder dem kegel / des um .a. bellini .b.c.d.e. ist. Darnach laß jch auß allen punckten der zifer vnd f.g.h. gowad linien / at. agel herab fallen / durch den runden grund / vnd betzeichen sie darinn mit jren ziffern / zu _ er weis wie das vor im grund der eyer lini Elipsis angetzeigt ist / etz jch den zirckel \(/\) mit dem ein fuß im grund ins Centrum .a. vnd den andern fuß a rad lini .1. vnd reiß gegen dem .d. rund hinauß / biß wider \(\mathrm{zu}^{\mathrm{o}}\) der lini . . Das thu \({ }^{\mathrm{e}} \mathrm{jc}\) allen ge so sicht man von stund an vor a/des \(\quad \mathrm{dt} / \mathrm{im}\) nyder getruckten grund / So das als vertig ist / so reiß ich die lir par aer br ini / auß disem grund also / jch reiß ein zwerch lini / stel darauf aufrech des para / im kegel .f.g.h. darnach nym jch auß dem grund die breyten .g.h. vnnd su auf die zy lini / also das die aufrecht .f. in der mitt stee / vnd zeichen dise sen punckten \(\eta^{\text {rach }}\) far jch mit eylf linien durch all punckten der aufrechter it jch der b and drag auß dem grund alle breytten durch die zal / von allen gerado die durch den zirckelris abgeschnytten sind \(/ \mathrm{zu}^{\circ}\) der aufrechten .f. vnnd puncktir sie \(\Delta \quad\) seytten / das die aufrecht .f. allweg in der mitt bleib / Alßdann zeu \({ }^{\mathrm{e}} \mathrm{ch}\) jch die brennlini pan von punckt \(\mathrm{zu}^{\circ}\) punckt/wie jch das hiebey hab aufgeryssen.

Quelle:
http•//de.wikisoun_ eysung_der_Messung,_mit_dem_Zirckel_und_Richtscheyt,_in_
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott
Viele weitere Modelle sind zu finden auf:

\section*{Der schnitt parabola}

"Underwe
Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen unnd gantzen corporen"

\section*{So du aber auß dem Parabel oder brenlini / hi}
so mach den kegel / darauß du das parabel schneid breyt vnden sein fuß ist / oder das der kegel ein rechto darein schneidest / vnd nymst die selb lini / vnd \(\eta\) vorn ein wenig ab / so brent er starck in dem sunnen darein geworffen werden / die sich mercken / das ein ytlich ding das sich in eing es sich wider herauß / vnnd wirdet doch da heraussen ist / darumb wirdt das linck vnden aufreissen / Also jch reiß ein zwerc__sini .a.b. daro
ckten die zu
herauß brechen m spitz
bey / So
rel \(d\) herauß brechen \(N\) aersteen mustu vor erscheynt / wie es hynein felt / also bricht hen an der gegenwertigen stat / des das ein planen spiegel / oder ein wasser darein du sichest / Nun stell jch ein liecht .c. in der in auf ein seyten / vnd stell ein ma \({ }^{\text {end }}\) dein dargegen auf die ander sey in den spiegel oder ms wasser sehe / des aug sey .d. so sindt sich das licht .c. dem a gesichtzs .d. streim linien gleich darin sich die widerbrechung \(b\) dem ein fuß in disen punckten. reist / vnd findest durch die mals,
 ch also / Wenn du auß dem punckten .e. ybersich zeu \({ }^{\mathrm{e}}\) chst / vnd ein zirckel mit n fuß von der lini .a.b. vber sich herum vnd des gesichtz streim lini .d. gleych weyt von der aufrechten lini sind so ist es der punckt darinn das licht funden wirdet / Wenn dann dein gesich sich durch de streicht/vnd auß dem obern liecht .c. ein aufrechte lini herab felt so bey den streichetten lini .d. wie tyf sich das liecht im spiegel oder wasser erscheynt sicher weiß nach seiner art / stossen sich die radi der sunnen / im spigel der auß der lin1 bels gemacht ist hergegen / vnnd fallen all herauß in einen punckten / ad brennen starck was die vrsach sey / das haben die Mathematici angetzeigt / wer nags lesen / Dis n o \({ }^{\text {eb }}\) bre meynung sichst du vnden aufgeryssen.

Quelle:
http•//de.wikisouru wiki/a eysung_der_Messung,_mit_dem_Zirckel_und_Richtscheyt,_in_Lini
en corporn

\section*{Kegelschnitt: Die Parabel} rsteifung auf einen starke achtel-)Karton aufgeklebth 9. Er zeigt auch den Veina, er Parabel aus der Vogelperspektive. uch die Schnittfläche (deren Begrenzungsdie Parabel ist) zur Stabilisierung des Modells beiträgt, sollte sie zur Verstärkung auf ein 2. Stück Kopierkarton satt aufgeklebt werden.

Weder die Grundfläche noch die Schnittfläche erhalten Klebefalze. Diese gibt es nur am Kegelmantel.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Kegelschnitt: Die Pa
Großes Modell}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Paraboloid}
mit einem Loch in der Mitte zum Durchstecken eines Fingers um tatsächlich viel Wärme abstrahlt, eine LED-Lampe aber nicht. Vorsi
Man kann statt der erweiterten Ôffnung für den Finger auch durch das ki digitalen Braten-Thermometers stecken.
Alle Kreislinien werden zuerst durchgehend gefalzt, dann in von außen hê an die Lampe! 4en Fühler eines lierten Linien für die Klebefalze eingeschnitten und dann en die nförmigen annitte der Klebefalze. Natürlich kann man beim Zusammenkleber he Kni cht verpeiden. Auf der Innenseite des Paraboloids wird vor dem Zu enkle Reses \(\mathrm{K} \ddot{\ddot{y}}\) Aluminiumfolie als Reflektor aufgeklebt. Dabei muss die go grader Foli Man fühlt deutlich die Wärme und auch deutı

Die Hyperbel eines schräg geschnit werden, dass die \(x\)-Achse durch di groß sind, kann man den Asymp Asymptoten entsprechen den Keg und \(S 2\) (oft auch \(A\) und \(B\) genannt mit den Hauptscheiteln S1 und S2
 beide Hyperbelabschnitte bis Unendlich gleich oordinaten-Ursprung \(O\) hin verschieben. Die die \(x\)-Achse, die durch die Scheitelpunkte S1 mittpunkte mit den Asymptoten ein Rechteck teln C und D. Der Abstand der Brennpunkte vom Mittelpunkt heißt Brennweite odermmeare Exzent flacher (größerer Winkel zy \(\quad\) der Drehachse egels und der Schnittfläche!) der Schnitt verläuft, desto weiter sind die Schei 1 und \(S 2\), a Brennpunkte von einander entfernt.

bel die Asymptoten ("Niemals-Berührenden") zum Koordinatenmittelpunkt O verschoben wera \(\boldsymbol{A}\) befindet sie sich in der 2. Hauptlage.

\section*{Möglichkeiten für den Bau eines Dor ar} zur Darstellung der Kegelschnitte mit H beln

Prinzipiell verläuft der Zusammenbau von zwei Kegeln zu einem Doppelkegel immer so, wie es im nebenstehenden Plan gezeigt wird. Man verwendet eine dicke Holzplatte als Sockel. Dann wird von unten und oben mit einem ForstnerBohrer ein Loch zum Versenken der oberen und \(y\) teren Schraubenmutter und Beilage gebohrt. Da ist die M4-Gewindestange gleich stabil mit dif Platte verbunden.
In die kreisförmigen Bodenplatten der Keg ein passend großes Loch geschnitten und spitzen werden so weit abgeschnitten, das ae Gewindo stange gerade noch durchpasst.
Nun muss man nur noch überlegen, y das aus Kopierkarton (um einen Bleistift herum gefertigte Papierröllchen für das Gewindestange und auch das z die Kegel einbringt. Beim ober lich erst zum Schluss an den Ka Muttern und Beilagen in der Mitte Position des oberen Keg Die Kegelflank coten) sollen möglichst in einc Schön ist es, ganz oben eine als Abschluss zu verwenden.
Noch besser - abor aufwändiger - is
einen Holzsock
tieren. Das ermoz leicher Art wie u
1. und die 2 Hauptlan leichter, zuy und zu ,bg rifen". Mra, auch leichter \(\boldsymbol{d}^{\prime}\) oben des nуя, oelmittelpunktes 1 rdinatenursprung 0 zeigen und
 stehen. wenden.

\title{
Albrecht Dürer (1471-1528) hat 1525 in frühneuhochde ner Spr Konstruktionsgang des Kegelschnittes zur Entsteh ar Hyp "Underweysung der Messung, mit dem Zirckel und Richtscheyt,
}

Nvn will jch fu \({ }^{\mathrm{e}} \mathrm{rba} \beta\) aufreissen die gabel lini \(\boldsymbol{y}\) sein / jch reiß wider den kegel .a.b.c.d.e/ Dary gegen der aufrechten .a. die sey oben .f. vp disen schnyt der gabellini hiperbole \(/ \mathrm{f} / \mathrm{g} / \mathrm{h} /\) punckten / von /f/g/h vnd zyfern / mit bar seytten ein aufrechte lini /f/durch all diśa Nerch linieñ vnder dem kegel des Centrum .a. vnnd zirckelryß .b.c.d.e. / Vin den schnyt des kegels \(/ \mathrm{f} / \mathrm{g} / \mathrm{h} /\) durch disen grund schneyden / vnd se \({ }^{+}\)astaben .g.f.h. darzu wie sich das auß dem kegel in grund wirft / Darnach nym jch eyn /wie jch vorn angetzeigt / vnd nym mit die breyte des halben kegels / auf einer ytliche erch lini f.g.h/ vnd trag die herab in grund / vnd setz den zirckel mit dem ein fu Centr mit dem andern fuß gegen dem \(/ \mathrm{d} /\) all zirckelryß / die dann ab geschn wer / der li f/h vnd setz jr zal darzu / Darnach nym jch die breiten auß dem grund au den linier e zu \({ }^{\circ}\) beyden seyten abgeschnyden sind worden / vnd drag sie \(\mathrm{zu}^{\circ}\) der aufreomorrini /f/ vnd mit zal auf zal / vnd puncktir die breyten \(\mathrm{zu}^{0}\) beyden seyten der ay ten /f/ neben d on der zal .1. herab byß auf/g/h/ Darnach zeuch die gabellini Hipén anckt a wie jch das hie vnden hab aufgeryssen / so eygentlich / ob schon key, dabey wer / vermeint jch / diß solt alles durch sehen ka \({ }^{\mathrm{e}} \mathrm{ntlich}\) seyn.

Albrecht Dürer 1525 in seinem Lehrwerk:
der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen unnd gantzen corporen"
Konstruktion eines Ast-Abschnittes eine
Der Schnitt erfolgt hier parallel zur Drehachse des Kegels. Wenn Du dann die Teile 2 mal ausdruckst, kannst

Der Schnitt erfolgt hier parallel zur Drehachse des Kegels. Wenn Du dann die Teile 2 mal ausdruckst, kannst

\section*{T 3.2.2 Konstruktion eines Kegelmodells mit Hyperb Abs itt (1)}

Unser Kegelmodell hat einen Radius von 7 cm , eine Höhe vor (volle) Seitenkante von \(18,38 \mathrm{~cm}\), das ist zugleich der Radiu schräge Schnitt zur Entstehung der Ellipse führt. Die Bogenlän mund dem Umfang des Zylinderbodens.

Hier ist der Kegelmantel mit dem Ausschnitt in Form Hyper/hel. Die Hys, ist die Schnittkurve.Sie erscheint in der Abwicklung des Keg ntels y in wahrer Form, sondern sie zeigt sich erst, wenn der Kegelmantel zusamm klebt y chtwinl'zur Schnittfläche von vorne unten betrachtet wird.

Der volle Kreis (\(\mathbf{3 6 0} 0^{\circ}\)) mit dem Radius des Kegelmantels sich leicht errechnen, dass die 44 cm rund \(137^{\circ}\) prechen.
 Mantel ist die Schnittfläche mit der hyperbe igen Schnittkaı_szuschneiden. (Sie errechneten ist nach unten versetzt zu sehen!) Von der 5 bis zum Mantelbogè, , erden dazu entsprechend jeweils alle \(10^{\circ}\) Projektionswinkel (nen die Schnitthöhe abgeschlagen wird. beim Zusammenrollen des Mantels zun gelmanten die wahre Schnittflächenbzw. Schnittkantengestalt. Der hier unten zusätzlich vortı
der Schnittfläche) aufgetragen, an deAypu int vorerst verzerrt zu sein. Erst ist nur da, um den Konstruktionsgan \({ }^{-l-l}\) arzustellen.

Teil des Abschnitt-Mantels
Die Schnittfläche selbst nimmt m as Modell aus der Konstruktion des Astabschnittes der Hyperbel.

\section*{Konstruktion eines Kegelmodells mit Hype}

Unser Kegelmodell hat einen Radius von 7 cm , eine Höhe vor (volle) Seitenkante von \(18,38 \mathrm{~cm}\), das ist zugleich der Radiu schräge Schnitt zur Entstehung der Ellipse führt. Die Bogenlänt

\section*{m und}
rel \(\mathrm{U}=\mathrm{d}=\mathbf{2}=\mathbf{7}\) Hypervel. Die Hy, itt (1) dem Umfang des Zylinderbodens.

Hier ist der Kegelmantel mit dem Ausschnitt in Form Schnittkurve.Sie erscheint in der Abwicklung des Keg dern sie zeigt sich erst, wenn der Kegelmantel zusamm fläche von vorne unten betrachtet wird.

Der volle Kreis (\(\mathbf{3 6 0} 0^{\circ}\)) mit dem Radius des Kegel`antels sich leicht errechnen, dass die 44 cm rund \(137^{\circ}\) prechen.
 Mantel ist die Schnittfläche mit der hyperbe Igen Schnittkaın szuschneiden. (Sie ist nach unten versetzt zu sehen!) Von der \(S\) bis zum Mantelboge,., erden dazu entsprechend jeweils alle \(10^{\circ}\) Projektionswinkel (der Schnittfläche) aufgetragen, an dechend jeweils alle \(10^{\circ}\) Projektionswinkel (der Schnittfläche) aufgetragen, an denen die Schnitthöhe abgeschlagen wird. beim Zusammenrollen des Mantels zun gelmanten die wahre Schnittflächenbeim Zusammenrollen des Mantels zun gelmanté
bzw. Schnittkantengestalt. Der hier unten zusätzlich vornt ist nur da, um den Konstruktionsganol-larzustellen.

Teil des Abschnitt-Mantels Aypu sint vorerst verzerrt zu sein. Erst mels \(y\) in wahrer Form, sonklebt y chtwinl zur SchnittDie Schnittfläche selbst nimmt mas Modell aus der Konstruktion des Astabschnittes

\section*{Konstruktion eines Kegelmodells mit Hyperb Großes Modell}

Da auch © Schnittfläche (deren Begrenzungslinie die Hyperbel ist) zur Stabilisierung des Modells beiträgt, sollte sie zur Verstärkung auf ein 2. Stück Kopierkarton satt aufgeklebt werden.

Weder die Grundfläche noch die Schnittfläche erhalten Klebefalze. Diese gibt es nur am Kegelmantel.

Konstruktion eines Kegelmodells mit Hyper Ats nitt (1) Der abgeschnittene Kegelt
Großes Modell

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Konstruktion eines Kegelmodells mit Hyperb

\title{
Konstruktion eines Kegelmodells mit Hyperb
} Kleines Modell, Teil 2

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net punktpunkt der Kugel mit der Hyperbelfläche ist der Brennpunkt der Hyperbel.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\title{
Konstruktion eines Ast-Abschnittes einer \\ Der Schnitt erfolgt hier parallel zur Drehachse des Kegels. Wenn Du dann die Teile 2 mal ausdruckst, kannst D men Dop.
}
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Die Grundfläche (der Grundriss) mit \(r=7 \mathrm{~cm}\) ist hier ein Winkelmesser, der zur Versteifung auf einen starken (Schuhschachtel-)Karton aufgeklebt werden sollte. Er zeigt auch den Verlauf der Parabel aus der Vogelperspektive.

Weder die Grundfläche noch die Schnittfläche erhalten Klebefalze. Diese gibt es nur am Kegelmantel.

Konstruktion eines Kegelmodells mit Hyper ats nitt (2) Großes Modell

Der herausgeschnittene Mantelteil

\title{
T 3.3.3a \\ nitt (2)
}

Der herausgeschnittene Mantelteil

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Konstruktion eines Kegelmodells mit Hyper ato nitt (2)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
Gleich große Hyperbelabschnitte rechtwinkeligen Doppelke
}

Der Schnitt erfolgt hier parallel zur Drehachse des Kegels. Wenn Du dann die Teile 2 mal ausdru

\title{
Gleich große Hyperbelabschnitte rechtwinkeligen Doppelke
}

Der Schnitt erfolgt hier parallel zur Drehachse des Kegels. Wenn Du dann die Teile 2 mal ausdru

Aus: Geometrische Flawen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\title{
Gleich große Hyperbelabschnitte eeine rechtwinkeligen Doppelk \\ (2 Kopien)
}
 werden so an den Mantel bzw. a Manto abschnitt geklebt, dass die Grade seite sichtbar sind.

hnittes. Sie werden mit den Böden verklebt hnen werden Kegelmantel bzw. KegelInd die Schnittflächen (mit den Hyperbeln)

\title{
Gleich große Hyperbelabschnitte eine rechtwinkeligen Doppelk
}

\section*{Gleich große Hyperbelabschnitte rechtwinkeligen Doppelk \\ (2 Kopien)}

\section*{Gleich große Hyperbelabschnitte rechtwinkeligen Doppelk \\ (2 Kopien)}

\section*{Unterschiedlich große Hyperbelabschnitte an}

Da die Hyperbeläste in das Unendliche verlaufen, schauen sie hier am Modell nur verschieden groß aus. Das ist eine Folge zur Drehachse der Kegel. Beide Hyperbeläste sind aber in ihrem Verlauf in das Unendliche gleich. Lege vor dem Zusammenba

Der Aufriss zeigt die wahre Breite und Höhe der Schnittfläche.

Der Seitenriss zeigt die wahre Breite und Höhe und das Aussehen des Kegels durch den Schnitt.

Der Aufriss zeigt die wahr
er Schnittfläche, nicht aber ihre wahre Hore. Diese sieht man verkürzt

Der Grundriss zeigt aus der Vogelperspektive den Verlauf der Hyperbelkante über der kreisförmigen Grundfläche. Der Seitenriss zeigt das Aussehen des Kegels.

Aus:
Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Unterschiedlich große Hyperbelabschnitte an g}
n
pelkegel
Da die Hyperbeläste in das Unendliche verlaufen, schauen sie hier am Modell nur verschieden groß aus. Das ist eine Folge zur Drehachse der Kegel. Beide Hyperbeläste sind aber in ihrem Verlauf in das Unendliche gleich. Lege vor dem Zusammenba

Der Aufriss zeigt die wahre Breite und Höhe der

Der Seitenriss zeigt die wahre Breite und Höhe und das Aussehen des Kegels durch den Schnitt.

\section*{Unterschiedlich große Hyperbelteile an eiv (Dr Der untere Kegel (1)}

Aus: Geometrische Flawen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körrer zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Unterschiedlich große Hyperbelteile an ein Ab elkegel} Der obere Kegel (1)
 und seines Kegelabschnittes. Sie werden mit den Böden verklebt und auf ihnen werden Kegelmantel bzw. Kegelabschnitt und die Schnittflächen (mit den Hyperbeln) angeklebt.

\title{
Unterschiedlich große Hyperbelabschy rechtwinkeligen Doppelkg
}

Da die Hyperbeläste in das Unendliche verlaufen, schauen sie hier am Modell nur verschieden groß aus. Das ist eine F zur Drehachse der Kegel. Beide Hyperbeläste sind aber in ihrem Verlauf in das Unendliche gleich. Lege vor dem Zusammı

Erst die Projektion der Schnittfläche zeigt ihre wahre Breite, Höhe und Form. Die Kurve ist die Hyperbel.

\title{
Unterschiedlich große Hyperbelabschy rechtwinkeligen Doppelkg
}

\author{
Da die Hyperbeläste in das Unendliche verlaufen, schauen sie hier am Modell nur verschieden groß aus. Das ist eine F
} zur Drehachse der Kegel. Beide Hyperbeläste sind aber in ihrem Verlauf in das Unendliche gleich. Lege vor dem Zusamm ihre wahre Breite, Höhe und Form. Die Kurve ist die Hyperbel.

\section*{Unterschiedlich große Hyperbelabschr at. rechtwinkeligen Doppelkegel (unt 1 r Ke}

\section*{Unterschiedlich große Hyperbelabschr aı, rechtwinkeligen Doppelkegel (unt 1 Kg}

Untere Schnittfläche mit Hyperbel

\section*{Unterschiedlich große Hyperbelabschni rechtwinkeligen Doppelkegel (oberer un nter}
teren Kegels und so an den Mantel bzw. àm, \(\quad\) telabscinet geklebt, dass die
Grade auto
rite sichtbar sind.

Boden des unteren Kegels

Verstärkungen für die Böden des oberen und unteren Kegels und seines Kegelabschnittes. Sie werden mit den Böden verklebt und auf ihnen werden Kegelmantel bzw. Kegelabschnitt und die Schnittflächen (mit den Hyperbeln) angeklebt.

\section*{Unterschiedlich große Hyperbelabschni rechtwinkeligen Doppelkegel (oberer un Ater Komal}

teren Kegels und so an den Mantel bzw. àn ntelabscinut geklebt, dass die
Grade auto
rite sichtbar sind.

Verstärkungen für die Böden des oberen und unteren Kegels und seines Kegelabschnittes. Sie werden mit den Böden verklebt und auf ihnen werden Kegelmantel bzw. Kegelabschnitt und die Schnittflächen (mit den Hyperbeln) angeklebt.

\section*{Unterschiedlich große Hyperbelabschr at rechtwinkeligen Doppelkegel (ob \(\mathrm{Keq}^{\boldsymbol{c}}\)}

\section*{Unterschiedlich große Hyperbelabschn at rechtwinkeligen Doppelkegel (ob \({ }^{\boldsymbol{K}}{ }^{\boldsymbol{\sigma}}\)}

\section*{Kegelschnitt senkrecht durch di Großes Modell, Teil 1} 2 Kopien, da beide Teile gebaut

\section*{Kegelschnitt senkrecht durch di Großes Modell, Teil 1} 2 Kopien, da beide Teile gebaut

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
Kegelschnitt senkrecht durch di Großes Modell, Teil 2
}

\section*{T 4.2}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Kegelschnitt senkrecht durch die Kleines Modell \\ 2 Kopien, da beide Teile gebaut w}

\title{
Kegelschnitt senkrecht durch die
} Kleines Modell
2 Kopien, da beide Teile gebaut n

\section*{Kegelschnitt in halber Höhe parallel
Großes Modell, Teil 1}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körrer zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körrer zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Luftdruckrakete für einfache Flugkurven}

Für unsere Rakete und das Abschussrohr benötigen wir:
a) 1 farbiges Blatt Kopierpapier A4 \(80 \mathrm{~g} / \mathrm{m}^{2}\) für den Rake sper
b) 1 farbiges Blatt Kopierkarton A4 \(160 \mathrm{~g} / \mathrm{m}^{2}\) für die Sta⿱ und für die Raketenspitze
c) Klebstoff, Klebeband und Isolierband
d) 2 Stück Elektro-Installoationsrohr (ca. 50 cm
e) ca. \(1,5 \mathrm{~m}\) Elektroinstallationsschlauch, auch \(\quad 0 \mathrm{~mm}\) hmesser
f) Leere Mineralwasaserflaschen (1,5 Liter)
g) Wenn auch noch eine Abschußrampe mit nach eigener Planung gebaut werden so akeleins an arur holz noch 2 Rohrschellen Dm 20 notwendig.

Der Bau der Rakete erfolgt genau nach dem Pl T 6.2 und ist \(\quad\) schwierig. Das Abschussrohr (50 cm) wird mit einer kle Säge etwa 3 bis 4 cm g 2 mal leicht V-förmig eingeschnitten, damit es in den In schlauch hineingesteckt werden kann. Auch das kürzere Rohr wird mit 2 V-förm versehen und in das andere Ende des Schlauchs gesteckt. Mit Isolierband chlaucn heiden Rohren fest verbinden. Am kürzeren Rohr wird nun so viel Isoliervand (oder bess weil es auch breiter ist das silberfarbige glasfiberverstärkte Montageband) aufgebracım ass das Rohr gerade noch in die Mineralwasserflasche passt. \(\quad\) die Rakete am längeren Rohr aufgesteckt und schon kann die Rakete gestartet \(y\) ach dom \(\operatorname{Start}\) wird die zerbeulte Flasche wieder aufgeblasen.
Wie der Start erfolgt, das zeigt
Wie könnte eine Startvorrichtu.

\section*{Luftdruckrakete für einfache Flugkurven}

Für unsere Rakete und das Abschussrohr benötigen wir:
a) 1 farbiges Blatt Kopierpapier A4 \(80 \mathrm{~g} / \mathrm{m}^{2}\) für den Rake sper
b) 1 farbiges Blatt Kopierkarton A4 \(160 \mathrm{~g} / \mathrm{m}^{2}\) für die Sta und für die Raketenspitze
c) Klebstoff, Klebeband und Isolierband
d) 2 Stück Elektro-Installoationsrohr (ca. 50 cm
e) ca. \(1,5 \mathrm{~m}\) Elektroinstallationsschlauch, auch \(\quad 0 \mathrm{~mm}\) hmesser
f) Leere Mineralwasaserflaschen (1,5 Liter)
g) Wenn auch noch eine Abschußrampe mit noch 2 Rohrschellen Dm 20 notwendig.

Der Bau der Rakete erfolgt genau nach dem Pl T 6.2 und ist , schwierig. Das Abschussrohr (50 cm) wird mit einer kle Säge etwa 3 bis 4 cht g 2 mal leicht V-förmig eingeschnitten, damit es in den In schlauch hineingesteckt werden kann. Auch das kürzere Rohr wird mit 2 V-förm versehen und in das andere Ende des Schlauchs gesteckt. Mit Isolierband chlaucn heiden Rohren fest verbinden. Am kürzeren Rohr wird nun so viel Isoliervand (oder bess \(\quad\) weil es auch breiter ist das silberfarbige glasfiberverstärkte Montageband) aufgebracım ass das Rohr gerade noch in die Mineralwasserflasche passt. \(\quad\) die Rakete am längeren Rohr aufgesteckt und schon kann die Rakete gestartet y ach Start wird die zerbeulte Flasche wieder aufgeblasen.
Wie der Start erfolgt, das zeigt
Wie könnte eine Startvorrichtu

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{U) Platonische, Archimedische und Catalanische geometrische Körper}

\section*{A) Die fünf Platonischen Körper Quelle: Wikipedia}

Achtung: Gemäß der deutschen Rechtschreibung können alle diese geometrischen Körper sowohl männlichen Artikel (im Sinne von: „,der Körper" bzw. „,der -flächner") als auch sächlichen Artikel haben! (z.B. „,der Tetraeder" oder „das Tetraeder"). In Wikipedia wird meistens der sächliche Artikel verwendet). Die Silbe „-eder" (im Englischen: „-hedron") kommt aus dem griechischen „to eidon" und bedeutet dort „Aussehen, Gestalt, Form"

Die Platonischen Körper bestehen aus gleichen Polygonen (=Vielecken). Alle Flächen, Kanten und Ecken sind äquivalent. Es gibt insgesamt fünf solche Polyeder: 1.) Tetraeder (engl.:Tetrahedron), 2.) Hexaeder (Hexahedron), 3.) Oktaeder (Oktahedron), 4.) Dodekaeder (Dodekahedron) und 5) Ikosaeder (Ikosahedron)

Teilweise ist in die Platonischen Körper eingezeichnet, wie die Ecken abgestumpft werden können. Die Mittelpunkte der Flächen können die Berührungspunkte von eingeschriebenen Körpern sein. Bei manchen Körpern kann man gar nicht so schwer selbst herausfinden, welcher Körper hier eingeschrieben werden kann.

Durch das reale Hantieren mit den Polyedern lässt sich der Eulersche Polyedersatz leicht erarbeiten.

\section*{B) Die Archimedischen Körper Quelle: Wikipedia}

Die Archimedischen Körper haben ebenfalls nur gleichseitige Polygone als Begrenzungsflächen. Allerdings sind verschiedene n-Ecke erlaubt, also z.B. reguläre Vierecke neben regulären Dreiecken, z.B. beim Kub(o)-oktaeder. Hier gibt es neben 13 speziellen Polyedern unendlich viele Prismen und Antiprismen. Die speziellen Polyeder können aus den Platonischen Körpern konstruiert werden, indem diesen die Ecken (gekappte oder abgestumpfe Polyeder) oder die Kanten (abgeschrägte Polyeder) abgeschnitten werden:
1.) Abgestumpfter Tetraeder (engl.: Truncated tetrahedron), 2.) Abgestumpfter Oktaeder (Truncated octahedron), 3.) Abgestumpfter Ikosaeder oder Fußballkörper (Truncated icosahedron), 4.) Abgestumpfter Hexaeder (Truncated hexahedron), 5.) Abgestumpfter Dodekaeder (Truncated dodecahedron), 6.) Kleiner Rhombenkuboktaeder (Truncated octahedron), 7.) Kub(o)oktaeder (Cuboctahedron), 8.) Ikosidodekaeder (Icosidodecahedron), 9.) Abgeschrägter Hexaeder (zwei im Drehungssinn spiegelbildlich entgegengesetzte Varianten) (Snubhexahedron ccw and cw), 10.) Abgeschrägter Dodekaeder (zwei spiegelbildlich entgegengesetzte Varianten) (Snubdodecahedron ccw and cw), 11.) Großer Rhombenkub(o)oktaeder (Truncated cuboctahedron), 12.) Abgestumpfter (bzw. Großer) Rhombenikosidodekaeder (Truncated icosidodecahedron), 13.) Kleiner Rhombenikosidodekaeder (Rhombicosidodecahedron)

Eine sorgfältig ausgearbeitete Zusammenfassung der Darstellungen in Wikipedia kann ich Ihnen auf Aufforderung gerne mailen.

Viele Benennungen in der Geometrie und in anderen Wissenschaftsbereichen gehen zurück auf Altgriechische Zahlen und Silben
\begin{tabular}{|c|c|c|c|}
\hline Zahl & Grundzahlwörter (Kardinalzahl) oft gibt es 3 Geschlechtsformen Hier ist der 1. Fall (Nominativ) angezeigt & Vorsilbe (Präfix) & Wortbeispiele ate) \\
\hline \multicolumn{4}{|l|}{Fett gedruckt sind hier die in der Geometrie meist gebrauchten Zahlen nd W erspiele} \\
\hline & & \(\mu\) ovo- [mono-] & OnO Y. (Monolog) \\
\hline 2 & סv́o [dýo] & \(\delta\) t-[di-] & Distickston, hoxid (\(\mathrm{N}_{2} \mathrm{O}\)) \\
\hline 3 & трєǐs, тpía [treîs, tría] & тpı-[tri-] & Trigon (Dreieck) \\
\hline 4 & \(\tau \varepsilon ̇ \tau \tau \alpha \rho \varepsilon\), , \(\varepsilon\) ¢́т \(\alpha \rho \alpha\) [téttares, téttara] & \(\tau \varepsilon \tau \rho \alpha-\) [tetra-] & Tetragon (Viereck),Tetraeder \\
\hline 5 & \(\pi \varepsilon ̇ v \tau \varepsilon\) [pénte] & \(\pi \varepsilon v \tau \alpha-\) [penta-] & n gon (Fünfeck), Pentagramm \\
\hline 6 & \({ }^{\text {c }}\) [[hex] & \(\varepsilon\) ¢ \(¢\) - [hexa-] & Hy a agon, Hexaeder \\
\hline 7 & غ́ntó [heptá] & & Heptagon \\
\hline 8 & о̇ктө́ [oktō] & о̇кто-[okta-] & Oktagon, Oktaeder \\
\hline 9 & غ̇vvéa [ennéa] & غ̇vvéa- [\({ }_{\text {Mnnéa-] }}\) & Enneagramm \\
\hline 10 & ঠéка [déka] & ठغ́кg déka-] & Dekagon, Dekagramm (= Maß!) \\
\hline 11 & ع̌vঠ¢ка [héndeka] & [hendeka-] & \\
\hline 12 & \(\delta \omega\) бєка [dōdeka] & оббкк-- & Dodekaeder \\
\hline 13 & & & ttares/téttara kaì déka] \\
\hline 15 & \(\pi \varepsilon v \tau \varepsilon к \alpha i \delta \varepsilon \kappa \alpha<\) [pentekaídeka] & 16: غ́ккаiঠєка [hekk & \\
\hline 17 & غ̇лтакаïєка [heptakaídeka] . & und so weiter & \\
\hline 20 & عǐkoбı [eíkosi] & б \(\alpha\) - [eikosa-] & Ikosaeder \\
\hline 30 & трı́́коขта [triákonta] & 40: \(\tau \varepsilon\) ¢тара́коขта [t & ta] \\
\hline 50 & \(\pi \varepsilon v \tau \grave{\kappa}\) коvt [pentēkonta] & und so weiter & \\
\hline 100 & غ́кхтóv [hekatón] & éкatóv- [hekatón-] & (Hektometer), Hektoliter, Hektar \\
\hline 200 & & [diakósia] / ठıмкоба- & \\
\hline 300 & & трıкоба- [triako & ... und so weiter \\
\hline 1000 & \(\chi^{i} \lambda_{101}, \chi^{i} \lambda_{1} 1, \chi^{\prime} \lambda^{\prime} \alpha\) [chílioi] & \(\chi\) ıı10-[chilio-] & Kilo(gramm), Kilometer, Kilowatt \\
\hline 2000 & & \(\delta_{\text {Iб才ı }} \lambda_{10}\) [dis chilio-] & \\
\hline 10000 & \(\mu\) úpıot, \(-\alpha\) l, \(-\alpha[\) ioi] & \(\mu\) моıо- [myrio-] & Myriade (Myriaden) \\
\hline \multicolumn{4}{|l|}{Geometrie von "ge" (griech.) = Eracund "métrein" (griech.) = messen Geometrie ist also Erdvermessung Diagonale von: dia=durch und gony=Knie, Winkel Das ist die Verbindungsgerade zwischen nicht benachbarten Ecken in einem Polygon Polyeder von: polys/ pole/poly=viel und hédra bzw. hedos=Sitz bzw. Fläche (im Deutschen änderte sich "hedra" zu "- eder", im Englischen wird, "hedra" zu "-hedron" Polyeder \(=\) Vielflach, Viel chner oder Ebenflächner (tetra=vier bei Tetraeder, dieser ist ein Vierflächner) Polygon (Vieleck) von: polys/pole/poly=viel und gony= kinkel Kathete von "káthetos" = die Herabgelassene, das Lot Die 2 kurzen Seiten im rechtwinkeligen Dreieck Hypothend "wypotgơno" = Ich spanne darunter. Die längste Seite im rechtwinkeligen Dreieck, gegenüber dem rechten Winkel Basis von "b Symmetrie von "symmetría" = Ebenmaß, Gleichmaß Isometrie von "isos" = gleich und "metrein" =Längengleichheit Grad von "gradus" = Schritt, Abschnitte / Ein Vollkreis hat 360 Grad (oder 400 Gon = Neugrad) Meter von "me pn" \(=\) Maß, -messer / als Artikel sind "der" und "das" Meter erlaubt ortho- von "orthos" = recht, richtig ("orthogonal" peri- von "peri" = um, herum -klin von"klinein" \(=\) neigen bzw. geneigt ("triklin" \(=\) dreifach geneigt bzw. dreifach abgeprementärwinkel von "complere" (lat.) = anfuillen Supplementwinkel von "supplere" (lat.) = ergänzen} \\
\hline \multicolumn{4}{|l|}{Empenenferte Links für Lehrer und besonders interessierte SchülerInnen höherer Klassen: >www.do Nikipedia.oeg/wiki/Griechische_Zahlw\%C3\%B6rter< >http://wapedia.mobi/Griechische_Zahlen<} \\
\hline \multicolumn{4}{|r|}{Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott} \\
\hline
\end{tabular}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott

\section*{Regelmäßiger Tetraeder als Kla 10}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Vergleich: Regelmäßiger und Allgeme \(\sim\) aeder}

Welche Möglichkeit gibt es, da per ohne echtes Berechn^n mit Hilie von Messbe feinen leichten Getreid Denke hier an Erfahrung unterricht gewonnen hast.

Führe schließlic \({ }^{\text {lie }}\) Berechnungen 0 achte aber dabei auf die vielen den Brüche!

\section*{Vergleich: Regelmäßiger und Allgeme a aeder}

\section*{Gleichschenkelig rechtwinkeliger Tet cuen}

\section*{Einige Überlegungen zu diesem Körper}
1.) Wenn du das gleic itige Dreieck als Grundfläche könnte man diesé noch benennen?

\section*{Gleichschenkelig rechtwinkeliger Te}

Einige Überlegungen zu diesem Körpein
1.) Wenn du das gleic itige Dreieck als Grundfläche könnte man diesé noch benennen?
2.) Welche \(\mathrm{Flä}\) qützt du als

Grundflä
möglich
3.) Baue event

5.) Kannst du Parkettieren auch noch andere Körper bauen?

Aus: Geometrische Flawen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Bemale die inneren Dreiecke mit Farbstiften in anderen Farben oder schneide gleiche aus Stücken Kopierkarton in anderen Farben aus!

Wenn in der Mathematik vom "Tetraeder" gesprochen wird, ist meist der regelischer Körper" ist) gemeint. Der griechische Ursprung des Wortes bezeichnet uch der hier als Modell zu bauende Körper ist ein Vierflächner.

Wenn in der Mathematik vom "Tetraeder" gesprochen wird, ist meist der regelischer Körper" ist) gemeint. Der griechische Ursprung des Wortes bezeichnet uch der hier als Modell zu bauende Körper ist ein Vierflächner.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be-greifen" © Manfred Pfennich (yanfred.Pfennich@aon.at) A-8583 Edelschrott

Hexaeder (=Würfel)

Hexaeder (=Würfel)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott
Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Ein Oktaeder als Zentralkörper des ple ternes \\ (2 Kopien)}

Die zwei Teile zu einem Oktaeder zusammenbauen. Die Doppel-Klebefalze sorgen für die nötige Steifheit der Kanten. Die Festigkeit der Flächen erhält man, indem man den Körper vor dem letzten Zusammenkleben mit zusammengeknüllten Zeitungspapier füllt.

Die zwei Teile zu einem Oktaeder zusammenbauen. Die Doppel-Klebefalze sorgen für die nötige Steifheit der Kanten. Die Festigkeit der Flächen erhält man, indem man den Körper vor dem letzten Zusammenkleben mit zusammengeknüllten Zeitungspapier füllt.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{(Pentagon-) Dodekaeder ("F̈̈nfeck-Zwölffläch}

Aus: Geometrische Flächen und Körper zum "Be - greifen" O- Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\subsection*{2.2.1}

Abgestumpfter Oktaeder ("Achtflächner")

\section*{Abgestumpfter Ikosaeder 1. Teil ("Zw fflà r")}

Hier siehst du, wie die FlächenGruppen ("Arme") des abgestumpften Ikosaeders zusammengehören.

Abgestumpfter Ikosaeder 2. und 3. Teil aim chner")

\section*{12 Spitzen zum Abgestumpften IV alo}
(3 Kopien mit je 4 Spitzen)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{12 Spitzen zum Abgestumpften IJ ad}
(3 Kopien mit je 4 Spitzen)

 nes Modo qus diesem volelbogen gewinnen. Hier oben siehst du den Plan dafür. Du musst die Fläche ausschneiden, dabei entlang der din in die Innengebiete schneiden. Dort werden die Kreuze eingeschnitten und an den Kanten zum Sechseck nach innen geknio. Loch umgeben, jewein
iilden die Klebefalze für die Fünfecke. Danach werden von den sechs Sechsecken, die ein sechseckiges Fünfecke eingeklebt werdé, fe Schnittlinie angrenzenden auf einander geklebt: So entstehen fünfeckige Löcher, in die dann die Quelle: www.servix.mathematik.uni-stuttgart.de/~stroppel/Polyeder/polyeder.shtml)

\section*{Abgestumpfter Ikosaeder}

Eine interessante Variante für den "Fußballkö'
 nes Modèn us diesem bastelbogen gewinnen. Hier oben siehst du den Plan dafür. Du musst die Fläche ausschneiden, dabei entlang der dron_in die Innengebiete schneiden. Dort werden die Kreuze eingeschnitten und an den Kanten zum Sechseck nach innen geknickı, den die Klebefalze für die Fünfecke. Danach werden von den sechs Sechsecken, die ein sechseckiges Loch umgeben, jeweils die Schnittlinie angrenzenden auf einander geklebt: So entstehen fünfeckige Löcher, in die dann die Fünfecke eingeklebt werden. (Quelle: www.servix.mathematik.uni-stuttgart.de/~stroppel/Polyeder/polyeder.shtml)

\section*{Abgestumpfter Hexaeder ("Sechsfläch}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\title{
8 Ecken zum Abgestumpften He cat
}

\section*{8 Ecken zum Abgestumpften He cat}
("Sechsflächner" = Würfel)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

8 Spitzen zum \({ }_{(\text {Kleinen })}\) Rhombenkub er ("Rhombus-Würfel-Achtflächner"

Die abgeschnittenen Spitzen sind gleichdseitige Tetraeder.

Aus: Geometrische Flächen und Körper zum "Be -greifen"

8 Spitzen zum (Kleinen) Rhombenkub er ("Rhombus-Würfel-Achtflächner"

Die abgeschnittenen Spitzen sind gleichdseitige Tetraeder.

Aus: Geometrische Flächen und Körper zum "Be -greifen"
© Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Hier links st du,
Ikosidod

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{20 Spitzen zum Ikosidodekag}

3 Kopien

Die augeschnittenen Spitzen sind gleichseitige Tetraeder.
tung: Von der 3. Kopie bleiben einige Dreiecke übrig

\section*{Abgeschrägter Hexaeder ("Sechsflächner"}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Abgeschrägter Hexaeder 2 ("Sechsflächner" un 2 Kopien}

\section*{Abgeschrägter Hexaeder 2 ("Sechsflächner"}

2 Kopien

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\title{
8 Spitzen zum Abgeschrägten H ("Sechsflächner" = Würfel) 4 Kopi
}

8 Spitzen zum Abgeschrägten H

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Abgeschrägter Dodekaeder 1. Teil}
("Zwölfflächner")
2 Varianten sind möglich

80 Dreiecke, 12 Fu.

\section*{Abgeschrägter Dodekaeder 2. Teil offi her")}

\section*{Abgeschrägter Dodekaeder 2. Teil (her") \\ 2 Varianten sind möglich (siehe Wikipedia}

\(1+2.13 .2 .1\)
(Kleiner) Rhomben-Ikosidodekaeder
1. Teil
2. Variante: Im Uhrzeigersinn

Hier links siehst du das Netz des Rhombenikosidodekaeders

,

\section*{(Kleiner) Rhomben-Ikosidodekaede . . Teil}

\section*{(Kleiner) Rhomben-Ikosidodekaede}

\section*{Triakis-Tetraeder}

Der Triakistetraeder ist der zum Körper. Er hat 12 Flächen, bei deno ge, stumpfwinklige Dreiecke mandelt. Mo entstanden denken, daß auf Fläche en aders eine regelmäßige dreiseitige Pyr e aufgesetzt wura gleichschenkli-

Netz

\section*{Triakis-Tetraeder}

Der Triakistetraeder ist der zum Körper. Er hat 12 Flächen, bei deno ge, stumpfwinklige Dreiecke mandelt. Mo
mpf entstanden denken, daß auf Fläche en eine regelmäßige dreiseitige Pyy ce aufgesetzt wura
gleichschenklinn sich dadurch
-ders eine

Netz

\section*{Der spezielle Triakis-Tet}
ichenwinkeln

Netz
Der spezielle Triakistetrae mit unt entsteht, wenn \(b=\frac{3}{5} \mathrm{a}\) ist,
Der spezielle Triakiste Cr ist d \(q\) 1 abgestumpren Tetraeder duale Körper. 12 F sind \(q\) ichschenklige, stumpfwinklige Dr mit stumpff (nkel von ca. \(112^{\circ} 53^{\prime}\). Man kanı ch entst denken, dass auf jede Fläche \({ }^{\text {mines }}\) M

\section*{} Pyramide aufy \(\lambda\) wurde

\section*{Der spezielle Triakis-Tet ear}

Netz

Der spezielle Triakistetrae mit unin
ت̈chenwinkeln entsteht, wenn \(b=\frac{3}{5}\) a ist

Der spezielle Triakiste lrist de n abgestumpren Tetraeder duale Körper. 12 Fl sind \(\mathrm{g}^{\text {ichschenklige, }}\) stumpfwinklige Dr mit stumpfe ankel von ca. \(112^{\circ} 53^{\prime}\). Man kant auf jede Fläche sines \(r\) Pyramide aufg \(\quad A\) wurde.

\section*{Rhomben-Dodekaed}

\section*{Rhomben-Dodekaed}

Der spezielle Rhombendodekaeder ist der zum Kuhoktaeden *ner. Er hat 12 Flächen, bei denen es sich um Rhombe einem Dlas verhältnis von \(1: 1,4142 \ldots(?)\) handelt.

\section*{Der spezielle Triakis-Okt}
 Der spezielle Triakisoktaed Hexaeder duale Körpux Er hat
a abgestumpften sich um gleichsche \(\quad\), stumpfur, - bei denen es sich um gleichsche \(\quad\), siecke mit einem stumpfen \(y\) el vonca. \(117^{\circ}\) It elt. Man kann ihn sich d In ents denken, dak auf jede Fläche eines reders regelm *ige dreiseitige
Pyramide auf

\section*{Der spezielle Triakis-Okt at}

Der spezielle Triakisoktaed
a abgestumpften Hexaeder duale Körpr Er hat bei denen es sich um gleichsche s, stumpfwis mit einemmstumpfen el von-ca. \(117^{\circ}\) in elt. Man kann ihn sich d hents denken, daß auf jede Fläche eines reders regelm *ige dreiseitige Pyramide auf

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Der allgemeine Triakisokt rat 24 aklige Dreiecke ヶanden denken,
es sich um gleichschenklis handelt. Man kann ihe sich daa daß auf jede Fläch es Oktaedèn dreiseitige Pyramid gesetzt wurde.

Der allgemeine Triakisok
es sich um gleichschenklis
Der allgemeine Triakisok
es sich um gleichschenkligs handelt. Man kann ihy sich dau
aklige Dreiecke daß auf jede Fläch es Oktaedèn dreiseitige Pyramid gesetztwurde.
sanden denken,
selmäßige

\section*{Tetrakis-Hexaeder}

Der Tetrakishexaeder ist der zum ab Körper. Er hat 24 Flächen, bei den Dreiecke mit einem Scheitelwinl kann ihn sich dadurch entstanden eines Hexaeders eine regelmäßige viersèn wurde.

\section*{Tetrakis-Hexaeder}

Der Tetrakishexaeder ist der zum at Körper. Er hat 24 Flächen, bei den Dreiecke mit einem Scheitelwinl kann ihn sich dadurch entstanden auf jede Fläche eines Hexaeders eine regelmäßige vierselu vide aufgesetzt wurde.

\section*{8 Deltoidal-Ikositetraed}

\section*{Hexakisoktaeder}

Netz

Der spezielle Pentagonikositetraedo Hexaeder duale Körper. Er hat 24 Fläch spiegelsymmetrische Fünfeck delt. Dieso abgeschrägten men es sich um lange benachbarte Seiten rei ebenfalls ge aber kürzere Seiten. Der spitze kel zw on den beioul längeren Seiten beträgt ca. \(80^{\circ} 4\) aie res on vier Winkel sind alle stumpf und gleich groß

Netz

Der spezielle Pentagonikositetraedo Hexaeder duale Körper. Er hat 24 Flächu spiegelsymmetrische Fünfeckf delt. Dieso abgeschrägten nen es sich um lange benachbarte Seiten y rei ebenfalls gh kürzere Seiten. Der spitze kel zw on den beiau längeren Seiten beträgt ca. \(80^{\circ} 4\) aie res \(n\) vier Winkel sind alle stumpf und gleich groß

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Pentagon-Ikositetraed}
2. Teil

\title{
Pentagon-Ikositetraed
}
2. Teil

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott

\section*{Rhomben-Triak \\ Rhomben-Triak cta er}

Der spezielle Rhombentriakontaed duale Körper. Er hat 30 Flächen, bo mit einem Diagonalenverhältnis von (1)

\author{
um Rhomben
}

42 handelt.

\section*{Rhomben-Triak}

Der spezielle Rhombentriakontaed duale Körper. Er hat 30 Flächen, ba mit einem Diagonalenverhältnis von (1

Der spezielle abgestumpften Dou 60 Flächen bei delt schenklige ppfwinklige stumpfen el von ca. \(119^{\circ} \quad \mathrm{t}\). Man kann ihy jede \(\begin{aligned} & \text { drei } \\ & \text { einey }\end{aligned}\) Pyrar drei Pyray

\section*{Triakis-I} kosar Körper. Er hat sh um gleichmit einem standen dentrn, daß auf saeders reve regelmäßige ufgesety de.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Pentakis-D0}

\section*{U 3.10.1 der}

Der Pentakisdodekaeder ist d duale Körper. Er hat 60 Fläc den schenklige Dreiecke mit einem s handelt. Man kann ihn eh dadurch auf jede Fläche eines kaeders eine in fünfsei-

\section*{Pentakis-D0 or der \\ \section*{U 3.10.1}}

Der Pentakisdodekaeder ist d in abges duale Körper. Er hat 60 Fläd den schenklige Dreiecke mit einem s handelt. Man kann ihn \(<\frac{1}{}\) dadurch auf jede Fläche eines Kaeders eine tige Pyramide aufges urde.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{ D Deltoidal-Hexakontae}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Hexakis-Ikosaed} (Disdyakis-Triako der)

Der Hexakisikosaeder ist der zum ab rosidodekaeder duale Körper. Er hat 120 Flächen, bei denena schiefwinklige Dreiecke von ca. \(89^{\circ}, 58^{\circ} 14^{\prime}\) und \(\quad 46\) handen inn sich dadurch entstanden denken, daß auf die Flächen osaeders regelmäßige sechsseitige Pyray aufse ad zum Schant bringt.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{V) Geometrische Körper zur CDRom ,,Beispiele und Anregungen" der Arbeitsgemeinschaft Didaktische Innovation}

\section*{Geometrisches Zeichnen / Darstellende Geometrie (ADI Geometrie)}

Für alle Netze in diesem Kapitel gilt: Nützen Sie die Fähigkeiten Ihres Fotokopierers, den Maßstab der Modelle zu ändern. Vergrößern Sie die Modelle, vor allem dann, wenn Sie diese als Lerhrmittel in Ihrer Lehrmittelsammlung aufheben wollen.

Da zur Mathematik die zahlenmäßige Erfassung der verschiedensten geometrischen Körper unverzichtbar dazugehört, ist auch ihre konstruktiv-zeichnerische Darstellung für den Mathematikunterricht ganz wesentlich. Ganz wesentliche Grundlagenarbeit leistete hier in Österreich die

Arbeitsgemeinschaft Didaktische Innovation GEOMETRIE

Die ADI-Geometrie ist eine Arbeitsgruppe, die aus ExpertInnen unterschiedlicher Schulformen, Pädagogischer Hochschulen und Universitäten besteht.

Konkrete Tätigkeiten der ADI GEOMETRIE sind:
- die Ausarbeitung von unterschiedlichen Arbeitsmaterialien (CD-ROM, Online-Material)
- die Betreuung von Informationsseiten mit geometrischen Inhalten, z.B. auf geometrie.schule.at
- die Ausarbeitung didaktischer Richtlinien und Hilfestellungen zur Umsetzung neuer Lehrpläne
- die aktive Mitarbeit bei Reformen, etwa im Bereich der Schulautonomie
- die Entwicklung von eContent für das Projekt ELCAD (eLearning und Computer Aided Design) > ELCAD national | ELCAD international
- der Ausbau von fachspezifischen Kooperationen in der Europäischen Union

\section*{http://www.geometry.at/adi}

\section*{Erreichbare Kompetenzen im Bereich der Geometrischen Körper}
- Sicheres Beherrschen Grund-, Auf-, Seiten- und Kreuzriss
- Sicheres Beherrschen verschiedenen Projektionsebene
- Sehr gute Raumvorstellung
- Sicherheit im Umgang mit den Zeichengeräten und Zeichenprogrammen
- Selbst Modelle entwickeln können

\section*{Der geometrische Raum (1)}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:
\(\pi_{3}\) Kreuz-/Seitenrissebene

\section*{Die 2 ken cer en als Schlitze einges werde urch diese wird die casche vor ten her}
wis.

D
der Schlitz
miv \(\quad \underset{\text { uf der Rückseite }}{\text { nd }}\) arkt.

\section*{\(\pi_{3}\) Kreuz-/Seitenrissebene}

\section*{Der geometrische Raum}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Der geometrische Raum

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net
(1)
(1)

\section*{V Informationen zu den 48 folgenden Modellen:}

Diese Netze sind sowohl zum Bau von Modellen, als auch zum Bau von Demo-Modellen für die Lehrmittelsammlung vorbereitet. Verkleinert man sie beim Kopieren auf 70,7 \% (1: Wurzel aus 2) entstehen Modelle in praktischer Größe für die SchülerInnen, vergrößert man sie hingegen um die Wurzel aus 2 (also auf 141 \%) sind sie bestens geeignet als Demo-Modelle. Diese Modelle sind dann in ihren Abmessungen genau doppelt so groß wie die Schülermodelle. Übrigens ist dann ihre Oberfläche 4 mal und das Volumen 8 mal so groß wie bei den Schülermodellen.

Der Ausdruck der vergrößerten Modelle erfolgt am besten auf weißen Fotokarton mit \(230 \mathrm{~g} / \mathrm{m}^{2}\) oder (noch besser) \(300 \mathrm{~g} / \mathrm{m}^{2}\). Die meisten Drucker schaffen das problemlos. Vor dem letzten Zukleben der Modelle - so weit es eben geht - mit zerknülltem Papier ausstopfen.

Der „Geometrische Raum" V1.1.1 und V1.2.1 ist für die Schülermodelle in passender Größe, die jeweils 2 Teile von V 1.1.2 und V 1.2.2 sind um jeweils \(141 \%\) vergrößert die geometrischen Räume für die Demo-Modelle.

© Manfred Pfennich (Manfred.Pfennich@anan.at) A-8583 Edelschrott

© Manfred Pfennich (Manfred.PPennich@anan.at) A-8583 Edelschrott

© Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper rum "Be -greifen"
© Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott

(c) Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennichaaan.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennichaanan.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper rum "Be -greifen"
© Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennich@aon,at) A-8583 Edelschrott

© Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott

© Manfred Pfennich (Manfred.Pfennich@aonaat) A-8583 Edelschrott

Modell

Aus: Geometrische Flächen und Körper zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
Methodisch - didaktische Vorbemerkungen zu
}

\section*{W) Geometrische Körper der Mineralogie:}

\section*{Die 32 Kristallklassen}

Kaum eine Schule kann es sich leisten, für den oft stiefmütterlich behandelten Bereich der Mineralogie eine große Zahl von Modellen anzuschaffen, auch wenn gerade technische Studien (Montan- und Hüttentechnik, Chemie und Kunststofftechnik...) grundlegende Kenntnisse der Kristallklassen geradezu voraussetzen. Nicht zu vergessen sind jene SchülerInnen, die - von der Schönheit der Kristalle fasziniert - unter die Mineraliensammler gehen.

Bei den hier vorgegebenen Kristallmodellen wurde ganz bewusst auf das Einzeichnen von z.B. Spiegelebenen zur Darstellung der Symmetrie-Eigenschaften verzichtet.

Ein gutes Werk für eine vertiefende Beschäftigung mit den Kristalleigenschaften ist die „Symmetrielehre der Kristallographie" von Rüdiger Borchardt / S. Turowsky aus dem Oldenbourg-Verlag (ISBN 3-486-24648-8)

Geradezu ein Muss für jeden, der sich mit der Mineralogie und mit den Kristallklassen mehr befassen möchte ist folgende Internetaddresse:

\section*{fwww.gastein-im-bild.info/stein/s_krikub.html}

Das ist eine Seite, die nicht nur über das Gasteinertal berichtet, sondern auch für alle Natur- und Mineralienfreunde äußerst interessant ist!

\section*{Kubisches System: Tetrakishexaeder}

Tetraki hexaeder

Mit einer gleishen Fläche u einer flachen Pyramide kleben

Kubisches System: DerRhombendodel
2 Kopien

Kubisches System:
Rhombendodekaeder
2 Kopi

Die st nach ramme
Kubus
essen Flächen
and.
Pyramiden a

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Kubisches System: Pentagonikositetraede}

Der Pentagonikositetraeder ist der zum abges Er hat demnach 38 Ecken, 60 Kanten und 24 + spiegelsymmetrische Fünfecke handelt. Diese b nen es sich um ei gleich lange benachbarte Seiten und drei ebenfalls g lange au Seiten. Der spitze Winkel zwischen den beiden lär \(\quad\) Seiten betras \(46^{\prime}\) (\(=2 \times 40,383 \mathrm{Grad}\) spiegelgleich), dig achen yier Winkel S_ e stumpf und gleich groß
Quelle: www.mathe.tu-freiberg.de/

\section*{Kubisches System: Pentagonikositetraede}

Der Pentagonikositetraeder ist der zum abges

Er hat demnach 38 Ecken, 60 Kanten und 24 spiegelsymmetrische Fünfecke handelt. Diese spiegelsymachbarte Seiten und drei ebenfalls on lan
nen es sich um ei gleich lange spitze Winkel zwischen den beiden lär Seiten betrà Grad \(46^{\prime}\) (\(=2 \times 40,383\) Grad spiegelgleich), die chen yier Winkel s e stumpf und gleich groß Quelle: www.mathe.tu-freiberg.de/ /sch/ca hdual.htol
 3 lange à Seiten. Der

Kubisches System:
\(\Xi\) Disdodekaeder \({ }_{(=\text {ZWweimal-Zwïffich }}\)

\author{
He|xa|kis|ok|ta|e|der (das) - <aus gr. Hexál
}

\section*{Kubisches System: Hexakisoktaeder}

Skizze und Modell zeigen, wie der Körper zusammengebaut wird

Achtundvierzigflächner mit ungleichseitigenı

 artoedrische Klasse) Diese nleo. atrieklasse entsteht, wenn nur vier > \(\quad\) an als Raumdiagonale angenommo. (und nicht 4-zä ie wir sie im Wurel selbst finAkelhalbier \({ }^{\text {a }}\) zu ihnen entstehen atzlich dre ge Achsen in den antenrichtungen des Würfels. Symmetrieebenen oder ein Symmetriezentrum entstehen nicht. Der zugehörige Körper ist ein Pentagon-Dodekaeder. Weil je 3 Fünfecke auf die Flächen eines Tetraeders aufgesetzt erscheinen, spricht man

\section*{Tetragonales System: Ditetragonale Dipyrami}

Um die Doppelpyramid snügend su zu können sind die Dreiecke imr ar paarweise à yten, um sie durch die größery an D 年 elklebefalze, festigen.

Tetragonales System: Ditetragonale Dipyrami

Um die Doppelpyramid sind die Dreiecke imy ar paarweise à ten, um sie durch die größery an Do elklebefalze, festigen.

\section*{Tetragonales System: Tetragonaler Trapezoed}

Zum links abgebildeten Körper findest du folgemde Inform Tetragonal-trapezoidische Symmetrieklasse agonaletrapezoidische Hemiedrie! - Kombiniert m Symmetrieachse mit einer 2-zähligen Ac kel, so tritt diese noch einmal um \(90^{\circ}\) v ergeben sich noch zwei weitere 2-zählig
Wie sieht es mit der Symmetrie rechten
Seine Flächen sind in der unter eihe gedruckt.

\section*{Tetragonales System: Tetragonale Dipyramig}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Tetragonales System: Tetragonales Dispheno}

\section*{Kubisches System: Tetragonales Dispheno}

Tetragonales System: Tetragonale Pyramid

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Tetragonales System: Tetragonale Pyramid

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennixh (Hhafrred.Pfennich @apon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennxh (H/anfred.Pfennich@arn.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Hexagonales System: Hexagonaler Trapezoed

\section*{Hexagonales System: Hexagonale Dipyramig ,}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Hexagonales System:

\title{
Hexagonales System:
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Hexagonales System: Hexagonale Pyramid

Könne

Pyramide
dieser P
nwände

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Modell

Hexagonales System: Hexagonale Pyramid

Pyramide

Könne nnwände dieser P auch gleich-

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Ska|le|no|e|der das; -s, - <zu gr."skalenos"(=ungleichseitig) und gl
Vielflächner mit 12 ungleichseitigen Dreiecken als Oberflä
sitz(fläche)>:

Modell

\section*{Trigonales System: Ditrigonaler Skalenoed}
 Grundrisa der Pyramide. Wie scheidets zweite Grundvom erst foche der beiden sten kann iit diesen Mantel-
shen b Nie sehen diese Fläas 2, Modell aus?

Trigonales System: Ditrigonaler Skalenoed

Ska|le|no|e|der das; -s, - <zu gr."skalenos"(=ungleichseitig) und g1 Vielflächner mit 12 ungleichseitigen Dreiecken als Oberflä

 Grundrisader Pyramide. Wie scheidet s zweite Grundvom ersty dche der beiden rten kann dit diesen Mantel-
when b Nie sehen diese Flä-
as 2, Modell aus?

Trigonales System: Ditrigonaler Trapezoed

Grundriss

\section*{Modell}

\section*{Trigonales System: Ditrigonaler Rhomboed}

Modell
1

\title{
Trigonales System: Ditrigonale Pyramide
}

Modell

\title{
Trigonales System: Trigonale Pyramide
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Orthorhombisches Systen Rhombisches Dispheng}

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Orthorhombisches Systen Rhombisches Dispheng}

\section*{Monoklines System: Rhombisches Prisma}

Monoklines System:
Rhombisches Prisma

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Triklines System: Triklines Pinakoid}

Pinakoid, ein Pa •aralleler Flächen, welches Kristallgestalten des quadratischen, hexagonalen, rhombisch, monoklinen und triklinen Systems
gegenüberliegende Flächenpaare w begrenzt. In de \(\quad\) rstgenannten Systemen liegt dies Flächenpaar (Endflächen) stets der Basis (s. d.) parallel, begrenzt also den Kristall den übrigen Systemen kann es auch rechts und links oder vorn und hinten auftreten und ist dann als basisches, brachyden übrigen Systemen kann es auch rechts und inks oder vorn und hinten auftreten und ist dann als basisches, brachy

Hier ein schönes Bildbeispiel triklinen Orthoklas aus: www.gastein-im-bild/info/stein

\section*{Triklines System: Trikline Pedien}
\(\mathrm{Pe} \mid\) di|on das; -s,...ien <aus gr. pedíon "Ebene, Fläche">: Kristallf zueinand nicht parallelen Flächenflächen

\section*{Triklines System: Trikline Pedien}
\(\mathrm{Pe} \mid\) di|on das; -s,...ien <aus gr. pedíon "Ebene, Fläche">: Kristallf zueinand nicht parallelen Flächenflächen

Die Kanten und Flächen sind ohne Symmetrie, es gibt keir tsprechena Diese Kristallflächen heißen Pedien.

\section*{X) ,,Spielend" Geometrie lernen}

Aus Platzgründen können hier nur einige Möglichkeiten für Spiele zum Thema Geometrie angedeutet werden. Gerade für die Wiederholung sind ähnliche Spiele für viele Schüler eine wichtige Sache. Ich lade Sie ein, sowohl Spiele aus Ihrer eigenen Erfahrung als auch aus dem Internet hier zu sammeln.

\section*{Erreichbare Kompetenzen im Bereich der Spiele zur Geometrie}
- Sicheres Beherrschen der verschiedenen Aufgaben
- Freude am Lernen in verschiedenen Methoden finden
- Selbst für sich Lernspiele und Lernkarteien entwickeln können

Körper - Memory

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Formel-Domino}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Formel-Domino

\section*{Pythagoras-Domino}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

\section*{Flächen-Domino}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Flächen-Domino}

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{Y) Administrative Hilfen für den Unterricht}

Die hier angeführten administrativen Hilfen entspringen der eigenen Praxis. Nehmen Sie bitte jene als Hilfe an, die Ihnen zusagen. Sammeln Sie hier aber auch andere administrative Hilfen, die Sie für sinnvoll halten.

Aufgabenkontrollblätter: Diese haben sich in meiner eigenen Unterrichtsarbeit sehr bewährt. Es gibt 2 Aufgabenhefte. In einem sind jene mit ungerader, im anderen jene mit gerader Nummer. Jede Aufgabe wird prozentuell mit Punkten bewertet. Für 5 Aufgaben mit \(85 \%\) oder mehr richtig in diesem Heft gibt es einen Aufgaben-Bonus: Eine Aufgabe braucht einmal nicht gemacht werden, weil ein Bonus eingelöst wird. Der Termin für das Einlösen des Bonus darf selbst gewählt werden. Einzige Ausnahme: Wenn etwas gerade neu erarbeitet wird, darf kein Bonus eingelöst werden. Übrigens zählen auch 5 sehr saubere aber nicht unbedingt so richtige Aufgaben so viel wie eine Aufgabe mit \(85 \%\). Das ist ein Anreiz zum sauberen Arbeiten, was ja auch später einmal in ihrem Beruf und in der Wirtschaft von unseren SchülerInnen erwartet wird.

Aufgaben-Übersicht: Hier sollten die einzelnen Lehrer eintragen, welche Aufgaben mit welchem Zeitaufwand an diesem Tag gegeben werden. Wir wissen doch von unseren eigenen Kindern zu Hause, dass es oft zu zeitlichen Überforderungen und dann wieder zu Leerläufen der Schüler kommt.

Jahres-Lehrstoffplanung: Eine gute Arbeitsplanung für das Schuljahr zeigt von Anfang an Stundenentfall durch Feiertage, unterrichtsfreie Tage oder fix vorgegebene Projektwochen der Klasse. Ist diese Grobstruktur geklärt, lässt sich der Unterricht besser einteilen.

\section*{Aufgabenkontrollblatt für das Aufgabenh Achtung: Alle Aufgaben im Aufgabenheft 1 erhalten ungera mmern für: \\ 5 Aufgaben mit zumindest \(85 \%\) ergeben einen Aufgaben-Bonus. In Form gibt es}

\section*{Aufgabenkontrollblatt für das Aufgabenhef} Achtung: Alle Aufgaben im Aufgabenheft 2 erhalten gerade für:

5 Aufgaben mit zumindest \(85 \%\) ergeben einen Aufgabe n-Bonus. In Form gibt es B

Y 2.1

\section*{e}
.
as

\(\square\)
\(\square\)

\(\square\) \(\square\)

\section*{Schularbeitenplan}
zum Einkleben in das Schularbeitenheft
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Nr.d.SA & Datum & ... Punkte von & \% & Note & Ver & terschrift \\
\hline 1. & & / & & & & \\
\hline 2. & & / & & & & \\
\hline 3. & & / & & & & \\
\hline & & & & & 7 & \\
\hline 4. & & / & & & & \\
\hline 5. & & / & & & &) \\
\hline 6. & & 1 & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Nr.d.SA & Datum & ... Punkte von & Non & Verb. & Unterschrift \\
\hline 1. & & / & &) & \\
\hline 2. & & 1 & & & \\
\hline 3. & & & & & \\
\hline & & & & & \\
\hline 4. & & / & & & \\
\hline 5. & & - 1 & , & & \\
\hline 6. & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Methodisch - didaktische Vorbemerkungen zu}

\section*{Z) Interessante ergänzende Blätter}

Hier finden Sie einige Nachträge mit schiefen Quadern und schiefen Würfeln, aber zum Beispiel auch das Oloid, einen sehr interessanten und auch schönen Körper.

Sicher werden auch Sie hier selbst aus Ihrer Erfahrung viele Blätter einfügen können!

Etwas Besonderes sind jene Modelle, die Ästhetik besonders von Platonischen und Archimedischen Körpern ausnützen. Hier werden ausnahmsweise einmal die Klebefalze - in Form von Kreissegmenten - nach außen hin sichtbar und als gestaltendes Element verwendet.

Gerade die Methode des Abschneidens und Umlagerns von Teilen kann in der Geometrie immer wieder verwendet werden. Das gilt für die Berechnung von Körperoberflächen ebenso wie für die Berechnung der Volumina verschiedener Körper. Es gilt hier, den Schülern analoge Vorgangsweisen bewusst zu machen.

Wichtig für die Arbeit mit den Modellen sind die ,Allgemeinen methodisch - didaktischen Vorbemerkungen" und die Hinweise „Zur Arbeit mit den Modellen" aus dem Einführungsteil der Kopiervorlagensammlung.

\section*{Erreichbare Kompetenzen}

\section*{im Bereich der interessanten ergänzenden Blätter}

Aus der großen Auswahl an interessanten Modellen kann man einzelne herauswählen, sei es aus Interesse am geometrischen Körper oder auch nur aus der Freude an der Schönheit mancher Modelle.
Viele Modelle locken zu intensiven mathematischen Überlegungen, aber schon Platon hat über die Schönheit der regelmäßigen Körper vorwiegend nur philosophiert und auch Archimedes hat sich mit diesen platonischen Körpern denkerisch (und sicher auch mit gebauten Modellen) auseinandergesetzt.

\section*{Ich wünsche allen an der Geometrie Interessierten viele schöne und denkintensive Stunden mit den Modellen dieser Sammlung!}

\title{
\(\mathrm{cm}^{2}\)-Netz für eigene Konstrul ne
}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{\(\mathrm{cm}^{2}\)-Netz für eigene Konstrul}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\title{
Z 2.1.1
}

\section*{Ein einfach verschobener Würfel (oder}

Die Frage, ob es ein verschobener Würfel oder ein verschobener Quader ist, kannst Du leicht beantworten. Du brauchst nur die Länge der verschiedene Seiten vergleichen.

\section*{Ein einfach verschobener Würfel (oder}

Die Frage, ob es ein verschobener Würfel oder ein verschobener Quader ist, kannst Du leicht beantworten. Du brauchst nur die Länge der verschiedene Seiten vergleichen.

Die Frage, ob es ein ver schobener Würfel oder el verschobener Qua/ 4 zr ist, kannst Du leicht ten. Du brauchst n . Länge der verschiedene Seiten vergleichen.

Ein zweifach verschobener Würfel (oder

\section*{Ein einfach verschobener Quader (\(\mathrm{P}_{7}\)}

Unter einem Parallelepiped (von griechisch \(\varepsilon \pi i \pi \varepsilon \delta 0\), epipedo \(=\) Fl che) Parallelötöp) versteht man einen geömetrischen \(K\) rper, der vön sechs \(p\) gleichen) in parallelen Ebenen liegenden Parallelögrammen begrenzt iped)

\section*{Ein einfach verschobener Quader (P}

Unter einem Parallelepiped (von griechisch \(\varepsilon \pi i \pi \varepsilon \delta 0\), epipedo \(=\) Fl che) Parallelötöp) versteht man einen geömetrischen \(K\) rper, der vön sechs \(p\)
hyme: \(S^{\prime}\)
e köng

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Modell: Schräger Schnitt an einey ayl er (1)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Der Zylinderabschnitt (1)}

Ser untere Teil hier ist der Abschnitt der Zylinderwand,
der obere Teil ist die Schnittfläche

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Drei Ansichten eines Körpers: Schräger Schnitt an em inder (2)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Keilförmig schräg geschnittener (Ill}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Aufbewahrungsdose für die Zylindermodelle 14 and 4.4}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott
 seitige Pyramide gebaut. Wie hochsind diese Pyramiden? Überlege, wo du hier rechtwinkelige Dreiecke hast, die du für den Pythag. Lehrsatz verwenden kannst. Überlege den Zusammenhang mit der Volumsformel der Pyramide.
 seitige Pyramide gebaut. Wie hochsind diese Pyramiden? Überlege, wo du hier rechtwinkelige Dreiecke hast, die du für den Pythag. Lehrsatz verwenden kannst. Überlege den Zusammenhang mit der Volumsformel der Pyramide.
 seitige Pyramide gebaut. Wie hochsind diese Pyramiden? Überlege, wo du hier rechtwinkelige Dreiecke hast, die du für den Pythag. Lehrsatz verwenden kannst. Überlege den Zusammenhang mit der Volumsformel der Pyramide.

Über jeder Würfelfläche wird hier eine gleichseitige Pyramide gebaut. Wie hochsind diese Pyramiden? Überlege, wo du hier rechtwinkelige Dreiecke hast, die du für den Pythag. Lehrsatz verwenden kannst. Überlege den Zusammenhang mit der Volumsformel der Pyramide.

\section*{Behälter für die drei Drit}
einfach
Then Gründen nicht ganz bis an den Rand gedruckt werden können, nimm sie rechts und links
Verstärkun des Behälters darfst du natürlich nicht zukleben und die oberen Klebefalze werden einfach zur

Behälter für die drei Drittel eines

\section*{Das (Pseudo-) Oloid - ein eigenartiger W? per (2)}
Dieses Pseu dist geringfügig größer als das vorige Modell. Der Grund dafür ist, dass man das Oloid kaum mit ten Klebefalzen bauen kann. So ist es leichter, die außen liegenden Klebefalze durch ein haut" 7 verdecken. So wird die an sich sehr interessante Form besser zur Geltung mehr
Dieses Pseu dist geringfügig größer als das vorige Modell. Der Grund dafür ist, dass man das Oloid kaum mit ten Klebefalzen bauen kann. So ist es leichter, die außen liegenden Klebefalze durch ein \(\quad\) haut" 7 verdecken. So wird die an sich sehr interessante Form besser zur Geltung mehr

\section*{Das Oloid von Paul Schatz - ein eigenartiger Ikörper (nach Franz Zahaurek)}

Das Oloid ist ein geometrischer Körper, der 1929 vom Bildhauer und Maschinenbauer Paul Schatz 7 entdeckt wurde. Das Oloid ist einer der wenigen bekannten Körper, die über ihre gesamte Ober-flÿ Oberfläche genau so groß ist wie die einer Kugel, die den gleichen Radius hat wie die beiden dr

\section*{Das Oloid von Paul Schatz - ein eigenartiger}

Das Oloid ist ein geometrischer Körper, der 1929 vom Bildhauer und Maschinenbauer Paul Schatz 7 entdeckt wurde. Das Oloid ist einer der wenigen bekannten Körper, die über ihre gesamte Ober-fl̈̈ Oberfläche genau so groß ist wie die einer Kugel, die den gleichen Radius hat wie die beiden dy den Mittelpunkten der Kanten beträgt \(60^{\circ}\). Betrachtet man das Oloid senkrecht zu den beiden \(K\) exakt ein Quadrat.

Der umstülpbare Würfel (Teil 1) von Paul Schatz
(nach Franz Zahaurek)

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Ein interessanter Schnitt durch eine

\section*{Behälter für die 2 Würfelhä}
(2 Kopien)

\section*{Ein ungleichseitiges Prisn}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Ein ungleichseitiges Prisma, zerlegt in 3 volumeng

Ein ungleichseitiges Prisma, zerlegt in 3 volumeng

\title{
Dekorative Polyeder als Schmuck
}

Die Polygone (Vielecke) den nächsten Kopiervorlagen haben alle gleich lange
Sefalze sind bei allen diesen Polygonen gleich großen Kreissegmenten. So passen sie zur Bau von So iven Polyeder - Modellen. Die Teile werden erst nach dem Falzen (z.B. mit einer ausgeschnitten und mit den Klebefalzen nach außen (und zusammengeklebt.

Da es für den Bau der Modelle notwendig ist, dass alle Seiten gleich werden die Teile mit mehr Ecken immer größer. So werden wohl jene Bau von Dekormodellen in Frage kommen.

Wenn Du mit Freunden Vielecke in anderen Farben it, entstes, us 20 Dreiecken ein bunter Ikosaeder als Dekorkugel. Du kannst y (Tetraeder, Oktaeder...) So entstehen wunderbare rkugeln, die du in de dieser Art bauen! Zimmer aufhängen kannst.

\section*{Fünfecke für dekorative M}

Kopiere diese Vorlage z.B. auf 5 verschiedene Kartonblätter und baue m bei dem die Kreissegmente Klebefalze sind, die diesmal nach außen sid bauen drehe die bedruckten Seite auf die Innenseite des Modells. So entst die du in deinem Zimmer aufhängen kannst. Mit den übriggebliebanen Pentag weiteres Modell beginnen.

\section*{Fünfecke für dekorative M}

Kopiere diese Vorlage z.B. auf 5 verschiedene Kartonblätter und baue m bei dem die Kreissegmente Klebefalze sind, die diesmal nach außen si bauen drehe die bedruckten Seite auf die Innenseite des Modells. So entsi die du in deinem Zimmer aufhängen kannst. Mit den übriggebliebenen Pentag

Aus:
Geometrische Flächen und Körper
zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennich@aon.at)

Geometrische Flächen und Körper
zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennich@aon.at)

Geometrische Flächen und Körper
zum "Be - greifen"
© Manfred Pfennich (Manfred.Pfennich@aon.at)

 ber unter \(V\). spuren davon viro Zeitung untergelegt. Beim Falzen wird der Papierfilz zusammengepresst und so ka, \(\quad\) die Knickkanten dann leichter scharfkantig umbiegen.
Jet iad das Mo sgescin fen. Drücke nun die dreieckigen Klebefalze von der Unterseite her ach oben. Dadurch klappen jetzt auch die rechteckigen Wände der achtsie nimmt ihre Form an. Hast Du dabei Schwierigkeiten, kannst Du die ineiden. Wenn Du willst, kannst du die Dose einfach so lassen, damit du en kannst. Du kannst aber auch von außen her etwas UHU zwischen die Dreiecksinn hen und sie zusätzlich bei jedem zweiten Wandteil symmetrisch nach links und rechts ankleben. Abc 1 die Dose klebst, muss schon der Deckel fertig geklebt sein, damit die Dose unter den Deckel passt. ner wieder probieren!

Zuerst wer Ginien (ohin Umfang), ,gefalzt", das heißt, sie werden mit Kugelschreiber unter ines Dreiecks sorgfältig kräftig nachgezogen. Damit nicht die Tischplatte Druck-
spuren dav presst und so
Jetzt wird das
hei eine Zeitung untergelegt. Beim Falzen wird der Papierfilz zusammengeolnen Knickkanten dann leichter scharfkantig umbiegen.
\({ }^{4} \mathrm{en}\). Drücke nun die dreieckigen Klebefalze von der Unterseite her en. Dadurch klappen jetzt auch die rechteckigen Wände der acht-
immt ihre Form an. Hast Du dabei Schwierigkeiten, kannst Du die

nà chneiden. Wenn Du willst, kannst du die Dose einfach so lassen, damit du a kannst. Du kannst aber auch von außen her etwas UHU zwischen die zusätzlich bei jedem zweiten Wandteil symmetrisch nach links und rechts anklebè, vor Du dı-Dose klebst, muss schon der Deckel fertig geklebt sein, damit die Dose unter den Deckel \({ }^{\text {P }}\)

Drucke den Stern auf farbigen Kopierkarton mit \(160 \mathrm{~g} / \mathrm{m}^{2}\) (oder vielleicht sog das Du dann selbst bemalst). Zuerst werden alle geraden Linien (ohne den äußen, das heißt, sie werden mit Kugelschreiber unter Verwendung eines Dreiqoks sorgfätı, innere Kreis ist nur eine Dekoration. Damit nicht die Tischplatte Drucky untergelegt. Beim Falzen wird der Papierfilz zusammengepresst und st leichter scharfkantig umbiegen.
Jetzt wird das Modell ausgeschnitten. Knicke nun die Arme des auch über die kurzen Linien. Wenn Du nun den Stern wieder ar unten. Die Arme des Sternes bleiben - ähnlich einem Dach - glej Jetzt brauchst Du nur noch einen Apfel, in den Du senkrecht ér. genau mit dem Mittelpunkt auf den Zahnstocher legst, kanper sich

achgezogen. Der
 entlang cides man dann angen Linien. Dann knicke steckst. Y u den Stern nun icht dreh Ite bei einem Elektrogeschäft in Deiner Nähe um ein etwa 30 cm langes Stüc Slektron_ enn Du es dann mit einem Wolltuch oder einem Stück Fell reibst, lädt es sic Zauberhand kreisen lassen. Übrigens lässt das Rohrstü

\section*{Sechsstrahliger tanzender}

Drucke den Stern auf farbigen Kopierkarton mit \(160 \mathrm{~g} / \mathrm{m}^{2}\) (oder vielleicht so das Du dann selbst bemalst). Zuerst werden alle geraden Linien (ohne den das heißt, sie werden mit Kugelschreiber unter Verwendung eines Dreiecks innere Kreis ist nur eine Dekoration. Damit nicht die Tischplatte Drucks ren davons, untergelegt. Beim Falzen wird der Papierfilz zusammengepresst und sy man dann dr leichter scharfkantig umbiegen.
Jetzt wird das Modell ausgeschnitten. Knicke nun die Arme des auch über die kurzen Linien. Wenn Du nun den Stern wieder ay unten. Die Arme des Sternes bleiben - ähnlich einem Dach - gleic Jetzt brauchst Du nur noch einen Apfel, in den Du senkrecht genau mit dem Mittelpunkt auf den Zahnstocher legst, kann en trogeschäft in Deiner Nähe um ein etwa 30 cm langes Stüc arines Lu otionsroy Du es dann mit einem Wolltuch oder einem Stück Fell reibst, lädt es sich el stat)isch an amit den Stern wie von Zauberhand kreisen lassen indem Du das nur nur in se fhe bringst. Übron Rohrstück auch kleine Papierstückchen oder mit einem Stanzer ausgestanzte priguren tanzen!

Ein Modell für geschickte Bastler mit Freude an der Natur. Geometriemodell, das nicht für Berechnungen herhalten muss!

\section*{Grundfläche fif „Schwiegermu \\ Die Edelstahl-Variante findest D} Schloss Trautm

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Ein Modell für geschickte Bastler mit Freude an der Natur. Geometriemodell, das nicht für Berechnungen herhalten muss!

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott

Ein Modell für geschickte Bastler mit Freude an der Natur. Geometriemodell, das nicht für Berechnungen herhalten muss! , Schwiegermu
Die Edelstahl-Variante findest D Schloss Trautm In der Natur hat diese Kaktee
thlebt Izelnen Rippen, den diese miteinander und dabei it dem oberen Kreis verklebt. bildet sich dort die Blüte!) luss wird der „Kaktus" Erst zu, am Bode Kleb na
 etwas verkleinert und Winkel angepasst werden.

Ein Modell für geschickte Bastler mit Freude an der Natur. Geometriemodell, das nicht für Berechnungen herhalten muss!

Ein Modell für geschickte Bastler mit Freude an der Natur. Geometriemodell, das nicht für Berechnungen herhalten muss!

Ein Modell für geschickte Bastler mit Freude an der Natur. Geometriemodell, das nicht
für Berechnungen herhalten muss

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf:

Die Edelstahl-Variante dieses Modells findest Du in den herrlichen botanischen Gärten von Schlos In der Natur hat diese Kakteenart 21 bis 37 Rippen, unser Modell hat ny

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Teil 1 des Gehäuses der Lochkamera}

Das ist die Innenseite vom Teil 1 unserer Lochkamera. H starken Linien falzen und dann scharf rechtwinkelig vnicken. bilden gemeinsam mit der Frontplatte eine nach hinte as ist währes vorerst einmal oben) offene Schachtel. Das wird unser \(Y\) Der Klebefalz wird erst nach dem fertigen Verly 1 von 1 und 2 mit dem Frontteil, in den dann die verschiedenen „以 können, über den zweiten Schachtelteil außf also vorerst einmal nach außen weg.
Die durch 2 Strichlinien begrenzte Fläche Lochkamera die „Halskrause" aufgeklebt zu einander im rechten Winkel halten sol gerichtet sein.) Das erleichtert dann da chieben der "Matsoheibe" im Inneren.

Die Pläne our La vamera (Z 13.1 b 13.6) müssen unbedins ay okarton mit \(300 \mathrm{~g} / \mathrm{m}\) _ cdry kt werden!

Die Pläne der Lochkamera (Z 13.1 bis Z 13.6) müssen unbedingt auf Fotokarton mit \(300 \mathrm{~g} / \mathrm{m}^{2}\) gedruckt werden!

Da zum echten Fotografieren mit der Lochkamera Fotopapier verwendet wird - und dieses gegen rotes Streulicht innerhalb der Kamera praktisch nicht empfindlich ist - sollte unbedingt auf roten Fotokarton gedruckt werden!

Sollte Ihnen nur weißer Fotokarton zur Verfügung stehen, dann drucken Sie die hier rot unterlegten Seiten!

\section*{Der Teil 1 des Gehäuses der Lochkamera}

Das ist die Innenseite vom Teil 1 unserer starken Linien falzen und dann scharf rechtw, bilden gemeinsam mit der Frontplatte eine vorerst einmal oben) offene Schachtel. Das wi Der Klebefalz wird erst nach dem ferti Frontteil, in den dann die verschied Wechselobjektive eingesetzt werden können, über den zweiten Schachte draufgeleimt. Der Klebefalz steht also vorerst einmal nach außen weg.
Die durch 2 Strichlinien begrenzte
 hinto Verleimen von und 2 mit dem Lochkamera die "Halskrause" aufgeklebt werde kâ» unsere Schachtelwände zu einander im rechten Winkel hall. (Dabei müssenv die Klebefalze nach hinten gerichtet sein.) Das erleichtert as Verschieben der "Mattscheibe" im Inneren.

\section*{Der Teil 1 des Gehäuses der Lochkamera}

Das ist die Innenseite vom Teil 1 unserer Lochkamera. Ah, starken Linien falzen und dann scharf rechtwinkelig vnicken. bilden gemeinsam mit der Frontplatte eine nach hinte as ist währen, vorerst einmal oben) offene Schachtel. Das wird unser K ragehäase. I Der Klebefalz wird erst nach dem fertigen Verl 1 von 1 und 2 mit dem Frontteil, in den dann die verschiedenen ,"y elobjg e" eing tzt werden können, über den zweiten Schachtelteil auße ufge C. Der pefalz steht also vorerst einmal nach außen weg.
Die durch 2 Strichlinien begrenzte Fläche Lochkamera die „Halskrause" aufgeklebt zu einander im rechten Winkel hatten sol gerichtet sein.) Das erleichtert dann da chieben der „Matus fteibe" im Inneren.

Die Pläne ous Lo kamera (Z 13.1 b-Z 13.6) müssen unbedins ay okarton mit \(300 \mathrm{~g} / \mathrm{m}\) - dry kt werden!

\section*{Der Teil 2 des Gehäuses der Lochkamera}

Das ist die Innenseite vom Teil 2 unserer Lochkamera. starken Linien falzen und dann scharf rechtwinkelig knicken bilden gemeinsam mit der Frontplatte eine nach hinter \(\mathrm{S}_{\mathrm{s}}\) ist wäh vorerst einmal oben) offene Schachtel. Das wird unser \(K\) agehäuse. Der Klebefalz wird erst nach dem fertigen Verle von 1 und 2, mit dem Frontteil, in den dann die verschiedenen „W elobje " eing cetzt werden können, über den zweiten Schachtelteil auße aufge . Der Befalz steht also vorerst einmal nach außen weg.
Die durch 2 Strichlinien begrenzte Fläche Lochkamera die „Halskrause" aufgeklebt de kanı,
du nur die und Teil 2 Arbeitens abei müssen gerichtet sein.) Das erleichtert dann day schieben der "Mầ neibe" im Inneren.

Die Pläne our Lo vamera (Z \(13.1 \mathrm{~b}^{\text {boZ }}\) 13.6) müssen unbedins ay okarton mit \(300 \mathrm{~g} / \mathrm{m}\) ocdry kt werden!
,orper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon,at) A-8583 Edelschrott vue weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Der Teil 2 des Gehäuses der Lochkamera}

Das ist die Innenseite vom Teil 2 unserer Lochkamera. starken Linien falzen und dann scharf rechtwinkelig knicker also vorerst einmal nach außen weg. Die durch 2 Strichlinien begrenzte Fläche Lochkamera die „Halskrause" aufgeklebt de kann, zu einander im rechten Winkel halten soly abei müssen of falze nach hinten gerichtet sein.) Das erleichtert dann da schieben der "Má neibe" im Inneren.

\section*{Die Pläne our La kamera (Z 13.1 b־Z 13.6) müssen unbedins ay okarton mit \(300 \mathrm{~g} / \mathrm{m}\)-dry kt werden!}
orper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon,at) A-8583 Edelschrott nuev weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Die Pläne der Lochkamera (Z 13.1 bis Z 13.5) mi unbe Fotokarton mit 300 g/m² gedruckt is

Die Pläne der Lochkamera (Z 13.1 bis Z 13.5) mi unbe Fotokarton mit \(300 \mathrm{~g} / \mathrm{m}^{2}\) gedruckt

Diese Rückwand wird nur benötigt, wenn mit der Lochkam auf Fotopapier fotografiert werden so

\title{
Methodische sowie mathematische und geometris\% alito tionen
} zur Lochkamera (Camera Obsy

Durch das Verschieben der Mattscheibe veränderst du den Blickwinkè era. Das ist ihre „Brennweite". Ist die Mattscheibe ganz vorne am Lochobj hast du eleinstellung, hinten - wenn die Schachteltiefe der Bilddiagonale entsprig hast du das Nu ktiv. Für eine Teleobjektiv-Einstellung müsste unsere Kamera noch

Je länger die Brennweite (also je weiter die Mattscheib ker bemerkt man das Wackeln beim Halten der Kam Außerdem nimmt die Beleuchtungsdichte (also die Hella Bildes stark ab. Bei doppeltem Abstand gegenüber frühy nur mu skeit zu bemerken, dafür ist aber das Bildmotiv größer da, genau dy so groß. Das gangene" Licht wird von den schwarzen Innenwänden der Kamera ve ackt.

Da die Kamera ja noch immer am gleiche ander steht, nützen wir also nur mehr die Hälfte der Strahlen die in der Mattsche oreite es, a auch nur mehr die Hälfte der Strahlen, die in der Mattscheibenhöhe einfanen. Im Gesant Helligkeit also nur mehr 1/4. Wie sieht es aus, wenn wir den Abstand sogar verdreifachu Quadratisches Abstandsgesetz)
Übrigens: Die wirksame Blendenz net man indem man die Brennweite (das ist in diesem Fall der Abstand der Mattscheibg Loch) Lochdurchmesser dividiert. Da der Lochdurchmesser sehr klein ist, ist verändert sich natürlich auch die schärfe.
Möchte man mehr Licht Fotografieren auf die Mattscheibe, den Film oder wie in unserem Fall auf das Fotopan mmen, kaneurnt einfach das Loch vergrößern. Das können wir experimentell durch verschı Löcher als Linse nachweisen. Wir handeln uns damit große Unschärfe ein. Erst eine passende \(L / m\), as verhindern, aber das funktioniert nur dann, wenn dafür scharf gestellt wiry \({ }^{\text {M }}\) Verschieben der Lins bstand zur Mattscheibe). Das passiert heute in fast jeder modernen Kamer tisch (Autofocus

Mathematisc gesehen The im Dualsystem: 1, 2, 4, 8, 16, 32, 64, 128, 256... und wird \(n \quad\) infachere \(\Sigma_{u}\). (Ob du als Miterbe eines Hauses nun \(1 / 60\) erhältst oder \(1 / 64\) macl vehr viel Unterschied!) Natürlich erzeugen heute die Kameras dank Elektronik stufenlose \(\lambda\)
Die Blendenre sich die Irisblend Stut afe auf die halbe Licht-Durchtrittsfläche kreisförmig schließt bzw. öff \(\quad\) biert) Man dann die Zeit, so trifft die gleiche Lichtmenge auf den Film oder fentiefe ändert sich. Bei offener Blende (kleiner Blendenzahl) ist sie sehr gen en braucht man eine weit geschlossene Blende. Das Foto soll ja von ganz Zwischenble

\title{
Methodische sowie mathematische Informationey
}

Z 13.8 bei der Lochkamera (Camera Obscura) und in der Fotog im All cinan

\section*{Die Füllzeit hängt von Eimergrôs.} Öffnungsweite des Regelventils ab

\section*{Methodische sowie mathematische Informationen}
bei der Lochkamera (Camera Obscura) und in der Fotogry Allge nen

\section*{Belichtungszeiten: Langzeiten wi,..8, 4}

Kurzzeiten als Sekundenbruchte stufenlose Zeiten) Ve klungsgera vgen Zeiten!

\section*{Das ist der Basisteil, von dem in ha die Spitze abgeschnitten}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Von diesem Dreiecksprisma verblieben 2/7 \(\mathbf{B r a}\)

Diese Spitze wurde im oberen Drittel der Höh

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Die quadratische Pyramide

Aus: Geometrische Flachen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Die quadratische Pyra fird im oberen Viertel der Höhe geteilt

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aan.at) A-8583 Edelschrott

\title{
Methodische Überlegungen zur Arbeit \(n\) in
} Spitze und Stumpf geteilten ly

\section*{Zum Denken provoziere
Ein Kegel verliert die Spitze:}
a) Wieder wird vom ganz aufgebauten Kegel die Spit men. Übrigens: Wie misst man die Höhe eines Kg ohne sif chnen zu müssen? (Die Mama misst die Kinder mit einem Buch of Eieck ge en Türsto Wieder die Volumenanteile schätzen, mit Goldhirse m viellei alte Archimedes daran gedacht?) und schließlio (um ist hi Verhältnis der Volumina nicht gleich wie beim Versybu b) mı eksprism esieht es mit dem Verhältnis der Oberflächen aus? am ist es An Nerhältnis der Volumina zu einander?

Ganz wichtig ist hier das Selbst von Vour fur den Anteil der Spitze bzw. des Kegelstumpfes am Gesamtvorumen des Kegels
b) Das gleiche Spiel mit der der Spitze am Gesamty

c) Das gleiche der Spitze
 chnitten werden. Und wieder ist der Anteil prisma. Warum. es mit dem verhältnis der Oberflächen aus? Warum ist es nicht gleich wie das Verha, olumina zu einander?
 werden von den SchülerInnen in der Ausf rung mit uatischen Inhalten erworben. Die inhaltsbezogenen Kom (nachhaltig) durch mathematische Prozesse (Handlungen) erworba

Lernu, ist wichtiger als das Ausführen fertig präsentierter Vorstellung ersetzt erst dann das Handeln, wenn es von eichend Erkenntnisse gewonnen hat." (Piaget)

Voin - greifen" zum Begreifen ist es nicht weit

\section*{Das ist der ganze Kegel}

Eine Vorbemerkung für alle 4 Kegelmodelle, die h Reihe zu bauen sind:

Die Klebefalze an den Kreisbögen sind nach dem frej aigen Falzen des

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Hier wird dem Kegel das obere Drittel abgetre}

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\title{
Die geometrische Deutung der binomisc For In:
}
\[
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{7}
\]

Das Ergebnis ist natürlich ein Würfel, dessen Grundfläche gleich av ass wie bei \((a+b)^{2}\). Warum? Denk daran, dass man bei obiger Rechny quch \((a+-\quad-b)\) schreiben kann! Wenn schon bei der Bodenplatte 3 Varia möglich sind, Varianten sind dann beim Würfel möglich?

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\title{
Die geometrische Deutung der binomisc \\ \((a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\) \\ Das Ergebnis ist natürlich ein Würfel, dessen Grundfläche \\ ro
} \((\mathrm{a}+\mathrm{b})^{2}\). Warum? Denk daran, dass man bei obiger Rechnung aucu,

\author{
auss wie bei
} (a+b) schreiben kann! Wenn schon bei der Bodenplatte mezhre yten mög

Diese 2 Körper zeigen, wenn sie in den Mantel von \((\mathbf{a}-\mathbf{b})^{3}\) gestellt werden, wie groß der positive Teil des Ergebnisses ist:
Der Leerraum des Mantels stellt \(\underline{a}^{3}\) dar, von dem die hineingestellten Körper \(\underline{\mathbf{a}^{2} \mathbf{b}}\) und \(\underline{\mathbf{b}}^{\mathbf{3}}\) abzuziehen sind. Der restliche Leerraum stellt also \(\mathbf{a}^{\mathbf{3}} \mathbf{- 3} \mathbf{a}^{\mathbf{2}} \mathbf{b}-\mathbf{b}^{\mathbf{3}}\) dar. Zu diesem (positiv zu denkenden) Leerraum kommt noch \(\mathbf{3 a b}^{2}\) außen dazu.

Bei unseren Flächen- unà benutzen wir positive Zahlen.

Bei unseren Volumenberechnung Zahlen.
Verlängern wir die Seite eines Würter auch nur um 1 cm , so wächst die Fläche bà an. Der Grund dafür rie Zunahme des Volu dem Kubik der Seite Man sagt auch: Das wächst, „zur 3. Potenz") Auch das Volumen einer ihres Radius. In dieser Gra als immer st man diesen ist die senkrechte Größe ,, gestaucht"

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Das Binärsystem heißt auch Dualsystem oder binäres System und es is Zweiersystem. Es gibt also nur 2 Ziffern: \(\underline{0}\) und 1
In unserem Zehnersystem (Dezimalsystem) haben wir hingegen die ffern von 0 bis 9, also 10 Ziffern.
Die Darstellung im Zweiersystem ist zwar umständlich, weil die Ar Stellen schnell wächst. Aber in der Informationstechnik hat sie eine große Bedeutung 1 und 0 können gedeutet werden als an-aus, wahr-falsch, ja-ne Strom oder kein Strom. Die duale Zahl 1011 entspricht als Wenn duale und dezimale (also \(\mathbf{Z}\) nebeneinander verwendet werden, go ein „Suffix", also den tief gestellten Buch

\title{
Achtung: \\ Die Seiten für das Modell von Castel del Monte \\ müssen auf A3 vergrößert und auf \\ Kopierkarton mit etwa \\ \(250 \mathrm{~g} / \mathrm{m}^{2}\) bis \(300 \mathrm{~g} / \mathrm{m}^{2}\) gedruckt werden
}

\section*{Castel del Monte}

\author{
"Die Krone Apuliens" \\ (Seit 1996 UNESCO-Weltkulturerbe)
}

\section*{Angewandte Geometrie in einem wunderbaren Schloss \\ (Ein „Castel" ist dem Namen nach eigentlich eine Burg. An diesem Bauwerk fehlt aber der Wehrcharakter zur Gänze)}

Versuch einer Annäherung durch ein Karton-Modell in A3 (\(\mathrm{M}=1: 150\))
Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Castel del Mont}

Das Castel del Monte liegt in Apulien (italienisch: Puglia), im Gemeindegebiet von Andria, einer Stadt in der ersten Hälfte des 13. Jahrhunderts (von 1240 bis um 1250 ?) unter Kaiser Friedrich II. errichtet wur \(\dagger 1250\) in Castel Fiorentino bei Lucera, Italien) aus dem Adelsgeschlecht der Staufer war ab 1212 römisch-deut Kaiser des römisch-deutschen Reiches. Von seinen 39 Regierungsjahren als römisch-deutscher Herrscher hielt er sit

Der Grundriss des Schlosses (Ein „Castel" ist eigentlich eine Burg, aber hier fehlt der Wehrcharak ebenfalls achteckigem Grundriss. Das Hauptachteck ist etwa 25 m hoch, die Türme sind rund 26 m sondern es sind Licht- und Luftöffnungen! Die Länge der Seiten des Hauptachtecks beträgt 16,50 Seiten eines Turms mit den Seiten des Hauptachtecks zusammenfallen. Der Haupteingang ist n einen achtseitigen Innenhof angeordnet. Nur drei Türme enthalten Wendeltreppen (linksdreher Anderem Bäder und Toiletten, aber auch Turmzisternen untergebracht.

Das Castel del Monte ist seit 1996 UNESCO-Weltkulturerbe und es ist auf der Rüc Das Bauwerk ist voll von Symbolismen. Castel del Monte erinnert beispielsweise an eine Kron als Abbild der Reichskrone gedacht gewesen sein, die ebenfalls oktogonal ist. Acht F König gekrönt worden war, achteckig ist auch der Barbarossaleuchter in dieser \({ }^{7} \quad\) Auch der Verm hen, wo F nicht bekannt (sollte es ein Jagdschloss sein?) und man weiß auch nicht, ob er ec

\title{
Zur Arbeit mit dem Modell von Castel del Monte
}

\section*{A) Allgemeine Informationen zum Bauen von}
* Im Allgemeinen werden Vorlagen für geometrische Körper auf Kopierkarton \(160 \mathrm{~g} / \mathrm{m}^{2}\) oder'~ Tdelle - wenn es Ihr Drucker schafft (eventuell probieren!) - auf Karton (Bristolkarton/Fotokarton) \(\quad 50 \mathrm{~g} / \mathrm{m}^{2}\) bis \(\quad\) dkt. Je höher die Grammatur des Kartons ist, desto stabiler ist natürlich das Modell.
* Das Modell von Castel del Monte wurde so konstruiert, dass möglichst o fertigen Körper eine viel größere Steifheit der Kanten und damit auch ei
* Noch vor dem Ausschneiden müssen die Biegekanten und K Kugelschreiber nachgezogen (gepresst bzw. „gefalzt") werden, de Gefalzt werden müssen meistens die dicken Linien. Nur selten sind dit besonders auf genügend Druck zum Halten des Lineals oder D sehr leicht! Holzlineale oder Metalllineale mit Gummilippe empfehlenswert.
* Zum Ausschneiden wird für lange Schnitte ein Papierme Schnitten glatte Schnittkanten, viel schöner als wenn 9 dreieckigen Klebefalze viel schneller. Verwenden Sie Papiermesser frei geführt werden. Für kurze Schnitte
* Manchmal müssen die Klebefalze noch etwas na
* Am besten eignet sich Alleskleber in Tube. Die Tube aber während des Arbé,
edingt in ein Kaffeehäferl stellen, damit kein Klebstoff auf den Tisch tropft! Für UHU Alleskleber ist das Lösungsmittè . Ungeeignet sind Kleber in Flasche (sie kleben zu langsam) und Klebesticks (sie kleb

abbrechbarer Klinge verwa aurch entstehen bei längeren er Schere schneiden. Außerdo sind Sie beim Schneiden der eine dicke Schneideunterlage! Für kurze Schnitte kann das

* Gehen Sie zum eigentlichen Bau des Sch_ orr, wie es auf d angegeben ist: Zuerst werde lie Sockelwände der Türne auf die unteren Wandteile des Qktogons aufgebaut des Fußbodens miteinandu des entsteht d nicht mit dem Baugrund vern angeklebt. Jetzt wird dieser Boden

\section*{astel del Monte}
leben Sie diesen - nachdem zuerst die zwei Teile tiger Kleber, da sich sonst alles verzieht!) oder mit zusammengeklebt wurden - mit Hi vollflächigem Auftrag des Klebstoff
lässt sich đer Boden n der äußeren Oktogon-Wände festgeklebt.
r unsichtbaren weißen Fläche des grünen „Baugrundes" und mit ihren Abdeckungen geschlossen, dann werden e 2 kurzen I-Träger aufgeklebt. Dann werden die 2 Teile Mitte wieder ein I-Träger. Dieser wird aber bei der Montage
* Nun werden die Wände des Innenhofes
"Mauer" gebilde vurde, die das Dach 6 mm un in das Innere d udes und nicht in den Ho geben durch in an, wo der Zwischer
dgeschoß Lichtöffy ven der Türm die Tür bichen Vorga beach ogon-Wand
teinander verklebt. Sie wurden so vorbereitet, dass am oberen Ende eine pie Doppelklebefalze der Hofmauern schauen beim Verkleben natürlich in die „Räume" stehenden Doppelklebefalze festigen den Innenhof und über dem ersten Stock und dann auch die Dachfläche angeklebt wird.
ebt. Dann werden die unteren Turmteile vorbereitet: Da die Luft- und uf achten, dass jeder Turm an seinen richtigen Platz kommt! Zuerst werden Sockel und ganz genau (bitte den Mauervorsprung von 2 mm am Turmsockel Einhalten der senkrechten Linie ist durch die senkrecht verlaufenden Linien der Stei gekleb is ssen sich die Teile im nassen Kleber-Bett noch nachjustieren. Also sorgfältig arbeiten! Jetzt folgen die Maue gen Genau zuschneiden! Jetzt ist das g

hd seine oberen Wandteile können montiert werden. Dabei hält man sich wieder an die Aufkleben der oberen Geschoßdecke werden für die Bildung der Dachneigung an den lik-Stäbchen aufgeklebt. Nach dem genauen Justieren - unter mehrfacher Kontrolle ob die und Aufkleben der Dachflächen (die Klebefalze an der langen und an der kurzen Trapezseite t) können dann die Türme fertiggestellt werden. Dazu werden mit den kleinen Streifen, deren klebt werden, die Turm-Oktogone geschlossen. Sie erhalten als Abschluss einfach eine flache (nicht mehr historischen) Situation.
ertig und es fehlt nur noch der Treppenblock. Dieser wird - auch hier wieder unter mehrfacher Kontrolle a stimmen - zuerst zusammengebaut und dann erst an seine Stelle gesetzt.
odenplatte (der ,,Baugrund" = Grundriss) samt dem umlaufenden Mauervorsprung der Türme
2 Teile der Grundflàm, mengeklebt mit nicht wasserhältigem Inébespray oder
big aufgetragenem Kleber satt auf eine 40 cm großen Karton oder fgeklebt. Nach dem Trocknen
wird die \({ }^{\mathrm{b}}\)
nau zugeschnitten.

\title{
Diese Bauteile sind die Sockelwände der 8 Türme, mit ihnen wird-nnen
}

Diese Bauteile sind die Abdeckungen der oncerkel. Die wei lebefalze nach oben an die Oktogonwand kleben!

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Wenn die Sockel der Türme fertig sind, werden die unteren Oktogonwände auf den Dourrund" geklebt: 8 Nur die Oktogonwand 1 mit dem Portal wird gleich ganz gebaut.

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be -greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Die Mauervorsprünge der Außenwände und die Zwischenpl
Zum einfacheren Ausschneiden hängen diese Teile hier noch zusam

Aus: Geometrische s., on und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aonat) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

Sie werden auf dem Mauervorsprung aufgeklebt

Gleich wie bei den unteren Oktogon-Außenwänden werden auch bei den oberen 0 jeweils 4 Klebefalze stabile Auflage- bzw. Klebeflächen gesg

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

Dieser Streifen schließt das Oktogon des Turmes auf dem Dach. Er wird erst nach dem Aufkleben der Dachteile mit den Klebefalzen innen im Turm angeklebt. Dann erst wird die graue Abschlussplatte des Turmes auf dem Turm-Oktogon aufgeklebt.
Die unteren und oberen Teile der Türme
oberer Turmteil

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

\section*{Die Mauervorsprünge und die Zwischenplatten für}

Die Zwischenplatten werden zuerst in 8 Blöcke mit je 5

Die Zwischenplatten werden zuerst in 8 Blöcke mit je 5 Platten zusammengeklebt und dann erst i

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net

\section*{Castel del Monte}

Die Decke über dem 1. Stock und das Dach und die heutigen (teilweise nicht his abschlüsse

Beim Aufkleben der Turm-Abdeckungen darauf achten, dass diese richtig gedreht werden: Die kleinen Nummern auf der Abdeckung müssen über der gleichen Nummer auf der Decke zu liegen kommen!

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich @aon.at) A-8583 Edelschrott

\section*{Castel del Monte}

Die Decke über dem 1. Stock und das Dach und die heutigen (teilweise nicht

\section*{Die Dachflächen}

Bei diesen Dachflächen werden die 3 Klebefalze rechts nicht gefalzt, sondern es wird die näch darauf geklebt. Zuerst aber wird die Dachfläche selbst an der Mittellinie gefalzt und leicht gek werden zur Gänze unter die Dachfläche geknickt und an der Decke des Obergeschoßes angekl Bau, die sich erst im Dachbereich zeigen, ausgleichen zu können sind die Dachflächen ety

Aus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott Viele weitere Modelle sind zu finden auf: www.mathematikmodelle.net
 zwischen die beiden Türme eingeklebt. Beim Bauen der \(T\) chere sehr hilfreich sein.

Das sind der Treppenlauf und das Podest vor dem Castel. Da die Stufen im Modell zu klein und daher nicht mehr faltbar sind, wird der Verlauf der Stufen einfach als schräge Rampe gebaut. Je nach Genauigkeit der eigenen Arbeit muss die Breite der Stiege eventuell gekürzt werden!

unteren Klebefalze sind deswegen eingefärbt, um geringe Ungenauigkeiten zu kaschieren. Bedarf geringfügig kleiner geschnitten werden. Beim Kleben müssen zuerst die Rückden Boden des Treppenblockes geklebt werde, dann erst wird der Treppenlauf verarbeitet. hinten unten geklappt und auf den Boden des Treppenblockes geklebt werden.
steht aus 112 großen, meist sichtbaren Bauteilen und nicht weniger als 115 Bauteilen, die für die ätzlich werden noch einige Schaschlikstäbchen für die Dachkonstruktion benötigt. Dieses Modell sorgfältiges Arbeiten beim Zusammenbau.

\section*{Inhaltsverzeichnis 1}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline & \multicolumn{5}{|c|}{Methodisch-didaktische Vorbemerkungen} \\
\hline & \multicolumn{5}{|c|}{Allgemeine Vorbemerkungen zur Arbeit} \\
\hline A & \multicolumn{5}{|c|}{Method.-didakt.Vorbemerkungen: Längenmaße} \\
\hline A & 1.1 & Von Mikro bis Giga & & & \\
\hline A & 1.2 & Von Atto bis Exa & & & \\
\hline A & 2.1.0 & Der Streckenzug ABCDA: Messübungen & & & \\
\hline A & 2.1.1 & Weitere Streckenzüge (1) Messübungen & & & \\
\hline A & 2.1.2 & Weitere Streckenzüge (2) Messübungen & & & \\
\hline A & 2.1.3 & Weitere Streckenzüge (3) Messübungen & & & \\
\hline A & 2.1.4 & Weitere Streckenzüge (4) Messübungen & & & \\
\hline A & 2.1.5 & Weitere Streckenzüge (5) Messübungen & & & \\
\hline A & 2.1.6 & Weitere Streckenzüge (6) Messübungen & & & \\
\hline A & 2.1.7 & Weitere Streckenzüge (7) Messübungen & & & \\
\hline A & 2.2.0 & 20 Verwandlungsübungen (blanko) & & & \\
\hline A & 2.2.1 & 20 Verwandlungsübungen (1) & & & \\
\hline A & 2.2.2 & 20 Verwandlungsübungen (2) & & & \\
\hline A & 2.2.3 & 20 Verwandlungsübungen (3) & & & \\
\hline A & 2.3.0 & 30 Verwandlungsübungen (blanko) & & & \\
\hline A & 2.3.1 & 30 Verwandlungsübungen (1) & & & \\
\hline A & 2.3.2 & 30 Verwandlungsübungen (2) & & & \\
\hline B & \multicolumn{5}{|c|}{Method.-didakt.Vorbemerkungen: Flächenmaße} \\
\hline B & 1.1.1 & Vom 1cm Quadrat bis zum 10 cm Quadrat & & & \\
\hline B & 1.1.2 & Teile vom Quadratzentimeter & & & \\
\hline B & 1.1.3 & Wieviel \(\mathrm{dm}^{2}\) sind \(1 \mathrm{~m}^{2}\) ? & & & \\
\hline B & 1.2.1 & Bestimme die Flächeninhalte (1) & & & \\
\hline B & 11.2.2 & Bestimme die Flächeninhalte (2) & & & \\
\hline B & 11.2.3 & Bestimme die Flächeninhalte (3) & & & \\
\hline B & 1.2.4 & Bestimme die Flächeninhalte (4) & & & \\
\hline B & 11.2.5 & Bestimme die Flächeninhalte (5) & & & \\
\hline B & 1.2.6 & Bestimme die Flächeninhalte (6) & & & \\
\hline B & 2.1.0 & 20 Kleine Flächenmaße (blanko) & & & \\
\hline B & 2.1.1 & 20 Kleine Flächenmaße (1) & & & \\
\hline B & 2.1.2 & 20 Kleine Flächenmaße (2) & & & \\
\hline B & 2.1.3 & 20 Kleine Flächenmaße (3) & & & \\
\hline B & 2.1.4 & 20 Kleine Flächenmaße (4) & & & \\
\hline B & 2.2.0 & 30 Kleine Flächenmaße (blanko) & & & \\
\hline B & 2.2.1 & 30 Kleine Flächenmaße (1) & & & \\
\hline B & 2.2.2 & 30 Kleine Flächenmaße (2) & & & \\
\hline B & 2.2.3 & 30 Kleine Flächenmaße (3) & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 2}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline B & 2.2.4 & 30 Kleine Flächenmaße (4) & & & \\
\hline B & 3.1.0 & 20 Große Flächenmaße (blanko) & & & \\
\hline B & 3.1.1 & 20 Große Flächenmaße (1) & & & \\
\hline B & 3.1.2 & 20 Große Flächenmaße (2) & & & \\
\hline B & 3.2.0 & 30 Große Flächenmaße (blanko) & & & \\
\hline B & 3.2.1 & 30 Große Flächenmaße (1) & & & \\
\hline B & 3.2.2 & 30 Große Flächenmaße (2) & & & \\
\hline B & 4.1.0 & 20 Alle Flächenmaße (blanko) & & & \\
\hline B & 4.1.1 & 20 Alle Flächenmaße (1) & & & \\
\hline B & 4.1.2 & 20 Alle Flächenmaße (2) & & & \\
\hline B & 4.2.0 & 30 Alle Flächenmaße blanko & & & \\
\hline B & 4.2.1 & 30 Alle Flächenmaße (1) & & & \\
\hline B & 4.2.2 & 30 Alle Flächenmaße (2) & & & \\
\hline C & & Method.-didakt. Vorbem & ngen: & Viere & cke \\
\hline C & 1.1.1 & Die Quadratfläche aus der Diagonale & & & \\
\hline C & 1.1.2 & Verhältnis von Quadratseite und Diagonale & & & \\
\hline C & 1.2.1 & Parallelogramme & & & \\
\hline C & 1.3.1 & Das Deltoid & & & \\
\hline C & 1.4.1 & Der Rhombus (die Raute) & & & \\
\hline C & 1.5.1 & Das Trapez & & & \\
\hline C & 1.6.1 & Viereckskostruktionen nach Diagonalen (1) & & & \\
\hline C & 1.6.2 & Viereckskostruktionen nach Diagonalen (2) & & & \\
\hline C & 1.6.3 & Viereckskostruktionen nach Diagonalen (3) & & & \\
\hline C & 1.6.4 & Viereckskostruktionen nach Diagonalen (4) & & & \\
\hline C & 1.6.5 & Viereckskostruktionen nach Diagonalen (5) & & & \\
\hline C & 1.6.6 & Viereckskonstr. nach Diagonalen, Lösungen 1 & & & \\
\hline C & 1.6.7 & Viereckskonstr. nach Diagonalen, Lösungen 2 & & & \\
\hline C & 1.7.1 & Dreiecksverwandlungen (1) & & & \\
\hline C & 1.7.2 & Dreiecksverwandlungen (2) & & & \\
\hline D & & Method.-didakt. Vorbemerk & en: Ra & umm & Würfel \\
\hline D & 1.1.1 & \(10 \mathrm{~cm}, 2 \mathrm{~cm}\) und 1 cm - Würfel (2 Kopien!) & & & \\
\hline D & 1.1.2 & Die Netze des \(1 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}\)-Würfels & & & \\
\hline D & 1.1.3 & \(5 \mathrm{~cm}, 2 \mathrm{~cm} \mathrm{u} .1 \mathrm{~cm}\) - Würfel & & & \\
\hline D & 1.1.4 & 6 cm und \(1 \mathrm{~cm}-\) Würfel & & & \\
\hline D & 1.1.5 & 7 cm - Würfel & & & \\
\hline D & 1.1.6 & \(8 \mathrm{~cm}, 2 \mathrm{~cm}\) und 1 cm - Würfel (2 Kopien!) & & & \\
\hline D & 1.1.7 & \(9 \mathrm{~cm}, 2 \mathrm{~cm}\) und 1 cm - Würfel (3 Kopien!) & & & \\
\hline D & 2.1.0 & 20 Raummaße (blanko) & & & \\
\hline D & 2.1.1 & 20 Raummaße (1) & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 3}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline D & 2.1.2 & 20 Raummaße (2) & & & \\
\hline D & 2.2.0 & 30 Raummaße (blanko) & & & \\
\hline D & 2.2.1 & 30 Raummaße (1) & & & \\
\hline D & 2.2.2 & 30 Raummaße (2) & & & \\
\hline E & & Meth.-didakt. Vorbem & kunge & : Мa & \\
\hline E & 1.1.0 & 20 Massenmaße (blanko) & & & \\
\hline E & 1.1.1 & 20 Massenmaße (1) & & & \\
\hline E & 1.1.2 & 20 Massenmaße (2) & & & \\
\hline E & 1.2.0 & 30 Massenmaße (blanko) & & & \\
\hline E & 1.2.1 & 30 Massenmaße (1) & & & \\
\hline E & 1.2.2 & 30 Massenmaße (2) & & & \\
\hline E & 2.1 & Spezifische Masse & & & \\
\hline F & & Method.-didakt.Vorbemerk & ngen: & Winke & naße \\
\hline F & 1.1 & Winkel und Winkelarten (1) & & & \\
\hline F & 1.2 & Winkel und Winkelarten (2) & & & \\
\hline F & 2.1 & Winkelsumme der Dreiecke & & & \\
\hline F & 2.2 & Winkelsumme der Vierecke & & & \\
\hline F & 3.1 & Vollkreiswinkelmesser von li u. re gegenläufig & & & \\
\hline F & 3.2 & Vollkreiswinkelmesser nach li u. re gegenläufig & & & \\
\hline F & 4.1 & Vollkreiswinkelmesser alpha & & & \\
\hline F & 4.2 & Vollkreiswinkelmesser beta & & & \\
\hline F & 5 & Vollkreiswinkelmesser 400 Neugrade & & & \\
\hline F & 6.1 & Der Thaleskreis & & & \\
\hline F & 6.2 & Katheten für den Thaleskreis & & & \\
\hline F & 7.1 & Winkelfunktionen sin, cos, tan, cot & & & \\
\hline F & 7.2 & Winkelfunktionen in Eigenerfahrung & & & \\
\hline F & 7.3 & Winkelfunktionen in Eigenerfahrung & & & \\
\hline F & 7.4 & Wertetabelle für die Winkelfunktionen & & & \\
\hline F & 8.1 & Einheitskreis: Winkelfunktionen 1. Quadrant & & & \\
\hline F & 8.2 & Einheitskreis: Winkelfunktionen 2. Quadrant & & & \\
\hline F & 8.3 & Einheitskreis: Winkelfunktionen 3. Quadrant & & & \\
\hline F & 8.4 & Einheitskreis: Winkelfunktionen 4. Quadrant & & & \\
\hline F & 8.5 & Die verdrehbaren Hypotenusen & & & \\
\hline F & 8.6 & Die verschiebbaren Gegenkatheten & & & \\
\hline F & 8.7 & Werte der Winkelfunktionen 0 bis 120 Grad & & & \\
\hline F & 8.8 & Werte der Winkelfunktionen 120 bis 240 Grad & & & \\
\hline F & 8.9 & Werte der Winkelfunktionen 240 bis 360 Grad & & & \\
\hline F & 8.10 & Werte der Winkelfunktionen im Einheitskreis & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 4}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline G & \multicolumn{5}{|c|}{Meth.-didakt. Vorbemerkungen: Würfel, Quader} \\
\hline G & 1.1.1 & Rechteckige Quader (1) & & & \\
\hline G & 1.1.2 & Rechteckige Quader (2) & & & \\
\hline G & 1.1.3 & Rechteckige Quader (3) & & & \\
\hline G & 1.2.1 & Quadrat. Quader (1) & & & \\
\hline G & 1.2.2 & Quadrat. Quader (2) & & & \\
\hline G & 1.2.3 & Quadrat. Quader (3) & & & \\
\hline G & 2.1 & Dach für rechteckige "Häuser" & & & \\
\hline G & 2.2 & Quader mit würfelförmigem Ausschnitt & & & \\
\hline G & 2.3 & Quader mit quaderförmigem Ausschnitt & & & \\
\hline G & 2.4 & Dach für quadratische "Häuser" & & & \\
\hline G & 2.5 & Würfel mit würfelförmigem Ausschnitt & & & \\
\hline G & 2.6 & Würfel mit quaderförmigem Ausschnitt & & & \\
\hline G & 3.1 & Quader mit 2 Ausschnitten (1) & & & \\
\hline G & 3.2 & Quader mit 2 Ausschnitten (2) & & & \\
\hline G & 3.3 & Würfel mit 2 Ausschnitten (1) & & & \\
\hline G & 3.4 & Würfel mit 2 Ausschnitten (2) & & & \\
\hline G & 4.1 & Quader mit 4 Ausschnitten & & & \\
\hline G & 4.2 & Würfel mit 4 Ausschnitten & & & \\
\hline G & 5.1 & Quader mit 8 Ausschnitten & & & \\
\hline G & 5.2 & Würfel mit 8 Ausschnitten & & & \\
\hline G & 5.3.1 & Denknüsse mit Würfeln (1) & & & \\
\hline G & 5.3.2 & Denknüsse mit Würfeln (2) & & & \\
\hline G & 5.3.3 & Denknüsse mit Würfeln (3) & & & \\
\hline G & 6.1 & Quader schräg geschnitten & & & \\
\hline G & 6.2 & Keilabschnitt vom Quader & & & \\
\hline G & 6.3 & Aufbewahrungsquader & & & \\
\hline G & 6.4.1 & Quadrat. Quader, diagonal geknickt (1) & & & \\
\hline G & 6.4 .2 & Quadrat. Quader, diagonal geknickt (2) & & & \\
\hline G & 6.5.1 & Quadrat. Quader, rechtw. diagonal geknickt (1) & & & \\
\hline G & 6.5.2 & Quadrat. Quader, rechtw. diagonal geknickt (2) & & & \\
\hline G & 6.6.1 & Würfel mit Sechseck als Schnittfläche & & & \\
\hline G & 6.6.2 & Würfel mit Sechseck als Schnitffläche & & & \\
\hline G & 6.6.3 & Würfel mit Sechseck als Schnitffläche & & & \\
\hline G & 6.6.4 & Karton mit dem Sechseck der Schnittfläche & & & \\
\hline G & 7.1 & Quader mit Sechseck als Schnittfläche & & & \\
\hline G & 7.2a & Quader mit Sechseck als Schnitffläche & & & \\
\hline G & 7.2b & Quader mit Sechseck als Schnittfläche & & & \\
\hline G & 7.2c & Die sechseckige "Halskrause" & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z"® Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 5}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline H & \multicolumn{5}{|c|}{Method.-didakt. Vorbemerkungen: Zusammengesetzte Körper} \\
\hline H & 1.1 & Zusammengesetzter Körper (1) & & & \\
\hline H & 1.2 & Zusammengesetzter Körper (2) & & & \\
\hline H & 1.3 & Zusammengesetzter Körper (3) & & & \\
\hline H & 1.4 & Zusammengesetzter Körper (4) & & & \\
\hline H & 1.5 & Zusammengesetzter Körper (5) & & & \\
\hline H & 1.6 & Zusammengesetzter Körper (6) & & & \\
\hline H & 1.7 & Zusammengesetzter Körper (7) & & & \\
\hline H & 2.1 & Zusammengesetzter Körper (8) & & & \\
\hline H & 2.2 & Zusammengesetzter Körper (1) mit Dreieck & & & \\
\hline H & 2.3 & Zusammengesetzter Körper (2) mit Dreieck & & & \\
\hline H & 2.4 & Zusammengesetzter Körper (3) mit Dreieck & & & \\
\hline H & 3.0 & Blatt für eigene Modelle & & & \\
\hline I & \multicolumn{5}{|r|}{Method.-didakt. Vorbemerkungen: Prismen über Dreiecks- und Vierecksflächen} \\
\hline I & 1.1.1 & gleichschenkelig rechtwinkelige Prisma (1) & & & \\
\hline I & 1.1.2 & gleichschenkelig rechtwinkelige Prisma (2) & & & \\
\hline I & 1.2.1 & gleichschenkelig spitzwinkeliges Prisma (1) & & & \\
\hline I & 1.2.2 & gleichschenkelig spitzwinkeliges Prisma (2) & & & \\
\hline I & 1.3.1 & gleichschenkelig stumpfw. Prisma (2) & & & \\
\hline I & 1.4.1 & Gleichseitiges Prisma (1) & & & \\
\hline 1 & 1.4.2 & Gleichseitiges Prisma (2) & & & \\
\hline I & 1.4.3 & Gleichseitiges Prisma (2a) & & & \\
\hline I & 1.5.1 & ungleichschenkelig stumpfw. Prisma & & & \\
\hline I & 1.6.1 & ungleichseitiges Prisma & & & \\
\hline I & 1.7.1 & rechtwinkelig ungleichschenkeliges Prisma & & & \\
\hline I & 2.1.1 & Prisma über Deltoid & & & \\
\hline I & 2.2.1 & Prisma über Raute (2) & & & \\
\hline I & 2.3.1 & Prisma über gleichsch. Trapez & & & \\
\hline I & 2.4.1 & Prisma über Parallelogramm (1) & & & \\
\hline I & 2.4.2 & Prisma über Parallelogramm (2) & & & \\
\hline I & 2.4.3 & Prisma über Parallelogramm (3) & & & \\
\hline I & 2.5.1 & Prisma über rechtw. Trapez & & & \\
\hline I & 2.6.1 & Prisma über ungleichsch. Trapez (1) & & & \\
\hline I & 2.6.2 & Prisma über ungleichsch. Trapez (2) & & & \\
\hline J & \multicolumn{5}{|c|}{Method.-didakt. Vorbemerkungen: Besondere Prismen} \\
\hline J & 1.1.1 & Prisma über 3 Teilflächen & & & \\
\hline J & 1.2.1 & Prisma über unregelm. Viereck & & & \\
\hline J & 1.3.1 & Fünfeckprisma aus Trapez und Dreieck & & & \\
\hline J & 2.1.1 & Dreiecksprisma mit abgeschn. Spitze (1) & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.a} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 6}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline J & 2.1.2 & Dreiecksprisma mit abgeschn. Spitze (2) & & & \\
\hline J & 2.2.1 & Dreiecksprisma & & & \\
\hline J & 2.2.2 & Abschneiden Spitze (1/3) eines Dreiecksprismas & & & \\
\hline J & 2.2.3 & Abschneiden Spitze (1/2) eines Dreiecksprismas & & & \\
\hline J & 2.2.4 & Abschneiden Spitze (3/4) eines Dreiecksprismas & & & \\
\hline J & 2.3.1 & Verschobenes Dreiecksprisma & & & \\
\hline J & 2.3.2 & Dreiecksprisma, an der Spitze dicker & & & \\
\hline J & 2.3.3 & Dreiecksprisma, an der Basis dicker & & & \\
\hline J & 3.1.1 & Großes regelm. sechseckiges Prisma & & & \\
\hline J & 3.1.2 & Regelmäßiges sechseckiges Prisma (1) & & & \\
\hline J & 3.1.3 & Regelmäßiges sechseckiges Prisma (2) & & & \\
\hline J & 4.1.1 & Großes regelm. achteckiges Prisma & & & \\
\hline J & 4.1.2 & Regelmäßiges achteckiges Prisma (1) & & & \\
\hline J & 4.1.3 & Regelmäßiges achteckiges Prisma (2) & & & \\
\hline J & 4.1.4 & Regelmäßiges achteckiges Prisma (3) & & & \\
\hline J & 5.1 & Zusammengesetzter Quader mit Bohrung & & & \\
\hline J & 5.2.1 & Trapezförm. Block mit waagrechter Bohrung (1) & & & \\
\hline J & 5.2.2 & Trapezförm. Block mit waagrechter Bohrung (2) & & & \\
\hline J & 6.1 & Um 90 Grad gedrehtes quadratisches Prisma & & & \\
\hline J & 6.2 & Um 45 Grad gedrehtes quadratisches Prisma & & & \\
\hline J & 6.3 & Sechseckprisma um 30 Grad gedreht & & & \\
\hline J & 6.4 & Sechseckprisma um 120 Grad gedreht & & & \\
\hline J & 6.5.1 & Regelmäßiges quadratisches Antiprisma & & & \\
\hline J & 6.5.2 & Regelmäßiges quadratisches Antiprisma & & & \\
\hline J & 6.5.3 & Allgemeines quadratisches Antiprisma & & & \\
\hline J & 6.5.4 & Allgemeines quadratisches Antiprisma & & & \\
\hline J & 6.6.1 & Regelmäßiges sechseckiges Antiprisma & & & \\
\hline J & 6.6.2 & Regelmäßiges sechseckiges Antiprisma & & & \\
\hline J & 6.6.3 & Allgemeines sechseckiges Antiprisma & & & \\
\hline J & 6.6.4 & Regelmäßiges achteckiges Antiprisma & & & \\
\hline J & 6.6.5 & Allgemeines achteckiges Antiprisma & & & \\
\hline J & 6.6.6 & Allgemeines achteckiges Antiprisma & & & \\
\hline J & 6.7.1 & Quadratisches Prisma, seitlich verschoben & & & \\
\hline J & 6.7.2 & Rechteckiges Prisma, seitlich verschoben & & & \\
\hline J & 6.8.1 & Quadratisches Prisma, diagonal schräg geschnitten & & & \\
\hline J & 6.8.2 & Quadratisches Prisma, diagonal verschoben & & & \\
\hline K & & Method.-didakt. Vorbemerkungen: P & ythag. & Lehrs & neidebeweis \\
\hline K & 1.1.1 & 2 Schneidebeweise für den Pythag. Lehrsatz & & & \\
\hline K & 1.2.1 & Pythag. Lehrsatz im Schneidebeweis (1) & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 7}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline K & 1.2.2 & Pythag. Lehrsatz im Schneidebeweis (2) & & & \\
\hline K & 1.2.3 & Pythag. Lehrsatz im Schneidebeweis (2) & & & \\
\hline K & 1.2.4 & Pythag. Lehrsatz im Schneidebeweis (3) & & & \\
\hline K & 1.2.5 & Pythag. Lehrsatz im Schneidebeweis (3) & & & \\
\hline K & 1.2.6 & Pythag. Lehrsatz im Schneidebeweis (4) & & & \\
\hline K & 1.2.7 & Pythag. Lehrsatz im Schneidebeweis (4) & & & \\
\hline L & & Method.-didakt. Vorbemerkungen: Rau & mdiago & alen & n und Würfeln \\
\hline L & 1.1.1 & Quader entlang Raumdiag. halbiert 1. Teil & & & \\
\hline L & 1.1.2 & Quader entlang Raumdiag. halbiert 2. Teil & & & \\
\hline L & 1.2.1 & Raumdiagonale am Quader (Var. 2) & & & \\
\hline L & 1.2.2 & Quader zur Aufbewahrung der Teile & & & \\
\hline L & 1.3.1 & Klappmodell Diagonalen am Quader & & & \\
\hline L & 1.4.1 & Würfel diagonal halbiert & & & \\
\hline L & 1.5.1 & Raumdiagonale am Würfel (Var. 2) & & & \\
\hline L & 1.5.2 & Würfel zur Aufbewahrung der Teile & & & \\
\hline L & 1.6.1 & Klappmodell Diagonalen am Würfel & & & \\
\hline M & & Meth.-didakt. Vorbemerkungen: Qua & atisch & und & ge Pyramiden \\
\hline M & 1.1 & Klappmodell einer quadratischen Pyramide & & & \\
\hline M & 1.2 & Quadratische Pyramide & & & \\
\hline M & 1.3 & Quadratische gleichseitige Pyramide & & & \\
\hline M & 1.4 & Quadratische gleichseitige Pyramide & & & \\
\hline M & 2.1 & Die Cheops-Pyramide im Modell für A4 und A3 & & & \\
\hline M & 2.2 & Die Wände der Cheops-Pyramide für A4 und A3 & & & \\
\hline M & 3.1 & Klappmodell einer rechteckigen Pyramide & & & \\
\hline M & 3.2 & Rechteckige Pyramide & & & \\
\hline M & 3.3 & Rechteckige Pyramide & & & \\
\hline M & 3.4 & Rechteckige Pyramide & & & \\
\hline M & 4.1 & Regelmäßige sechseckige Pyramide & & & \\
\hline M & 4.2 & Regelmäßige sechseckige Pyramide & & & \\
\hline M & 4.3 & Regelmäßige sechseckige Pyramide & & & \\
\hline M & 4.4 & Sechseckige gleichseitige Pyramide & & & \\
\hline M & 4.5 & Achteckige Pyramide (1). & & & \\
\hline M & 4.6 & Achteckige Pyramide (2). & & & \\
\hline N & & Method.-didakt. Vorbemerkungen: & olumen & sbew & Pyramiden \\
\hline N & 1.1.1 & Schiefe Pyramide als 1 Drittel eines Würfels & & & \\
\hline N & 1.1.2 & Behälter für Pyramidenteile vom Würfel & & & \\
\hline N & 1.2.1 & Schiefe Pyramide als Teil eines Quaders, 1. Teil & & & \\
\hline N & 1.2.2 & Schiefe Pyramide als Teil eines Quaders, 2. Teil & & & \\
\hline N & 1.2.3 & Schiefe Pyramide als Teil eines Quaders, 3. Teil & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 8}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline N & 1.2.4 & Offener Quader zur Aufbewahrung der Teile & & & \\
\hline N & 2.1.1 & Teile (links) für die Negativpyramide & & & \\
\hline N & 2.1.2 & Teile (rechts) für die Negativpyramide & & & \\
\hline N & 2.2.1 & Pyramide und "Negativpyramide" für Volumensbeweis & & & \\
\hline N & 2.2.2 & 8 Skalenoeder für die Negativpyramide & & & \\
\hline N & 2.3 & Oben offener Würfel & & & \\
\hline N & 3.1 & Einfacher Volumensbeweis quadr. Pyramide & & & \\
\hline N & 3.2 & Einfacher Volumensbeweis quadr. Pyramide & & & \\
\hline N & 4.1 & Einfacher Volumensbeweis rechteck. Pyramide & & & \\
\hline N & 4.2 & Einfacher Volumensbeweis rechteck. Pyramide & & & \\
\hline 0 & & Method.-didakt. Vorbemerkungen: & b- und & Auss & Pyramiden \\
\hline 0 & 1.1 & 3/4 einer quadratischen Pyramide (1) & & & \\
\hline 0 & 1.2 & 3/4 einer quadratischen Pyramide (2) & & & \\
\hline O & 2.1 & \(5 / 8\) einer quadratischen Pyramide (1) & & & \\
\hline O & 2.2 & \(5 / 8\) einer quadratischen Pyramide (2) & & & \\
\hline P & \multicolumn{4}{|r|}{Method.-didakt. Vorbemerkungen: Pyramidenstümpfe} & pitze in Relat \\
\hline P & 1.1 & Eine quadratische Pyramide verliert die Spitze (1) & & & \\
\hline P & 1.2 & Eine quadratische Pyramide verliert die Spitze (2) & & & \\
\hline P & 1.3 & Eine quadratische Pyramide verliert die Spitze (3) & & & \\
\hline P & 1.4.1 & Eine Pyramide verliert die Spitze: Was ist falsch? & & & \\
\hline P & 1.4.2 & Ein "unmöglicher" Pyramidenstumpf & & & \\
\hline P & 1.5 & Eine quadratische Pyramide verliert die Spitze & & & \\
\hline P & 2.1 & Die Knickpyramide des Snofru im Modell, für A4 & und A3 & & \\
\hline P & 2.2 & Die Wände der Knickpyramide des Snofru, für A4 & und A3 & & \\
\hline P & 3.1 & Eine rechteckige Pyramide verliert die Spitze (1) & & & \\
\hline P & 3.2 & Eine rechteckige Pyramide verliert die Spitze (2) & & & \\
\hline P & 3.3.1 & Eine rechteckige Pyramide verliert die Spitze & & & \\
\hline P & 3.3.2 & Eine rechteckige Pyramide verliert die Spitze & & & \\
\hline P & 3.4 & Eine rechteckige Pyramide braucht ihren Pyramidenstumpf & & & \\
\hline P & & \multicolumn{4}{|l|}{P4.1.a-f-4.5.a-f Vorbemerkungen: Denknüsse mit 6 Pyramiden und deren} \\
\hline P & 4.1a-f & \multicolumn{4}{|l|}{Arbeitsaufträge zu 6 Pyramiden, die einem etwas aufzulösen geben} \\
\hline P & 4.1.a1 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.a2 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.b1 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.b2 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.c1 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.c2 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.d1 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.d2 & Denknüsse mit Pyramiden & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich @aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 9}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline P & 4.1.e1 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.e2 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.f1 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.1.f2 & Denknüsse mit Pyramiden & & & \\
\hline P & 4.2a-f & Arbeitsaufträge zu 6 Pyr & pfen, & e ein & fzulösen geben \\
\hline P & 4.2.a1 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.a2 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.b1 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.b2 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.c1 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.c2 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.d1 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.d2 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.e1 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.e2 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.f1 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.2.f2 & Denknüsse mit Pyramidenstümpfen & & & \\
\hline P & 4.3a-f & Arbeitsaufträge fur & en zu 6 & den P & tümpfen \\
\hline P & 4.3.a & Spitze zum Pyramidenstumpf 2.a & & & \\
\hline P & 4.3.b & Spitze zum Pyramidenstumpf 2.b & & & \\
\hline P & 4.3.c & Spitze zum Pyramidenstumpf 2.c & & & \\
\hline P & 4.3.d & Spitze zum Pyramidenstumpf 2.d & & & \\
\hline P & 4.3.e & Spitze zum Pyramidenstumpf 2.e & & & \\
\hline P & 4.3.f & Spitze zum Pyramidenstumpf 2.f & & & \\
\hline P & 4.4a-f & Arbeitsaufträge & idenstü & mpfen & rägung \\
\hline P & 4.4.a 1 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.a2 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.b1 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.b2 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.c1 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.c2 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.d1 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.d2 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.e1 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.e2 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.f1 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.4.f2 & Keilartiger Pyramidenstumpf & & & \\
\hline P & 4.5a-f & Denknüsse: Arbeitsaufträge & denstü & mpfe & eren Abschrägu \\
\hline P & 4.5.a1 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 10}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline P & 4.5.a2 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.b1 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.b2 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.c1 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.c2 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.d1 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.d2 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.e1 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.e2 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.f1 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline P & 4.5.f2 & Oben abgeschrägter Pyramidenstumpf & & & \\
\hline Q & & Method.-didakt. Vorbemerkungen & : Kath & etensa & hensatz \\
\hline Q & 1.1 & Kathetensatz im Schneidebeweis (1) & & & \\
\hline Q & 1.2 & Kathetensatz im Schneidebeweis (2a) & & & \\
\hline Q & 1.3 & Kathetensatz im Schneidebeweis (2b) & & & \\
\hline Q & 1.4 & Kathetensatz im Schneidebeweis (3a) & & & \\
\hline Q & 1.5 & Kathetensatz im Schneidebeweis (3b) & & & \\
\hline Q & 1.6 & Kathetensatz im Schneidebeweis (4a) & & & \\
\hline Q & 1.7 & Kathetensatz im Schneidebeweis (4b) & & & \\
\hline Q & 2.1 & Lösungen zum Kathetensatz im Schneidebeweis (1-2) & & & \\
\hline Q & 2.2 & Lösungen zum Kathetensatz im Schneidebeweis (3-4) & & & \\
\hline Q & 3.1 & Der Höhensatz (Konstruktion und Schneidebeweis) (1) & & & \\
\hline Q & 3.2 & Der Höhensatz (Konstruktion und Schneidebeweis) (2) & & & \\
\hline Q & 4.1 & Der Höhensatz (1) & & & \\
\hline Q & 4.2 & Der Höhensatz (2a) & & & \\
\hline Q & 4.3 & Der Höhensatz (2b) & & & \\
\hline Q & 4.4 & Der Höhensatz (3a) & & & \\
\hline Q & 4.5 & Der Höhensatz (3b) & & & \\
\hline Q & 4.6 & Der Höhensatz (4a) & & & \\
\hline Q & 4.7 & Der Höhensatz (4b) & & & \\
\hline R & & Method.-didakt. Vorbemerkungen: & Kreis, & Zylind & erschnitte \\
\hline R & 1.1 & A und U von Kreis, Quadrat und Rechteck (1) & & & \\
\hline R & 1.2 & A und U von Kreis, Quadrat und Rechteck (2) & & & \\
\hline R & 2.1 & Geschlossener Zylinder & & & \\
\hline R & 2.2 & Geschlossener Zylinder & & & \\
\hline R & 2.3 & Geschlossener Zylinder & & & \\
\hline R & 2.4 & Geschlossener Zylinder (4) & & & \\
\hline R & 3.1 & Walze mit Bohrung & & & \\
\hline R & 4.1 & Dickwandiges Rohrstück (1) & & & \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 11}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline R & 4.2 & Dickwandiges Rohrstück (2) & & & \\
\hline R & 5.1 & Quadratischer Quader mit Bohrung & & & \\
\hline R & 5.2 & Rechteckiger Quader mit Bohrung & & & \\
\hline R & 6.1 & Schrägschnitt von Rundstab: Die Ellipsenkonstrukti & & & \\
\hline R & 6.2 & Mantelkonstruktion von schräg geschnittenem Rund & & & \\
\hline R & 6.3 & Die Flächen am schräg geschnittenen Rundstab & & & \\
\hline R & 6.4 & Die Flächen am schräg geschnittenen Rundstab & & & \\
\hline R & 6.5 & Die Flächen am schräg geschnittenen Rundstab & & & \\
\hline R & 6.6 & Die Flächen am schräg geschnittenen Rundstab & & & \\
\hline R & 7.1 & Elliptische Dose (1) & & & \\
\hline R & 7.2 & Elliptische Dose (2) & & & \\
\hline R & 8.1 & Doppelt schräg geschnittener Rundstab (1) & & & \\
\hline R & 8.2 & Doppelt schräg geschnittener Rundstab (2) & & & \\
\hline R & 9.1 & Globus mit Edelstahlringen & & & \\
\hline R & 9.2 & Kreise aus 19mm Platten & & & \\
\hline R & 10.1 & Kreisbogentrigon & & & \\
\hline R & 10.2 & Kreisbögen zum Kreisbogentrigon & & & \\
\hline R & 10.3 & Kreisbogentrigon & & & \\
\hline R & 10.4 & Kreisbögen zum Kreisbogentrigon & & & \\
\hline R & 10.5 & Kreisbogenpentagon & & & \\
\hline R & 10.6 & Kreisbögen zum Kreisbogenpentagon & & & \\
\hline R & 10.7 & Kreisbogenpentagon & & & \\
\hline R & 10.8 & Kreisbögen zum Kreisbogenpentagon & & & \\
\hline S & & Method.-didakt. Vorbemerkun & gen: K & gel u & ümpfe \\
\hline S & 1.1 & Kegel (1) & & & \\
\hline S & 1.2 & Kegel (2) & & & \\
\hline S & 1.3 & Kegel (3) & & & \\
\hline S & 2.1 & Halbkegel (1) & & & \\
\hline S & 2.2 & Halbkegel (2) & & & \\
\hline S & 3.1 & Dreiviertelkegel (1) & & & \\
\hline S & 3.2 & Dreiviertelkegel (2) & & & \\
\hline S & 4.1 & Untere Hälfte eines Kegels & & & \\
\hline S & 4.2 & Unteres Drittel eines Kegels & & & \\
\hline S & 4.3 & Die abgetrennten Kegelspitzen & & & \\
\hline S & 5.1 & Kegel: Einfacher Beweis für das Volumen, Teill & & & \\
\hline S & 5.2 & Kegel: Einfacher Beweis für das Volumen, Teil2 & & & \\
\hline T & & Method.-didakt. Vorbem & rkung & n: K & \\
\hline T & 1.1.1 & Kegelschnitt am Modell: Die Ellipsenkonstruktion & & & \\
\hline T & 1.1.2 & Kegelschnitt am Modell: Die Ellipsenkonstruktion & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 12}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline T & & Albrecht Dürer und die Ellipse (2 Seiten) & & & \\
\hline T & 1.2.1 & Die Ellipse am angeschnittenen Kegel (1) (groß) & & & \\
\hline T & 1.2.2 & Die Ellipse am angeschnittenen Kegel (2) (groß) & & & \\
\hline T & 1.2.3 & Die Ellipse am angeschnittenen Kegel (3) (groß) & & & \\
\hline T & 1.3.1 & Kegelschnitt mit Ellipse: Die abgeschnittene Spitz & & & \\
\hline T & 1.4.1 & Die Ellipse am angeschnittenen Kegel (1) (klein) & & & \\
\hline T & 1.4.2 & Die Ellipse am angeschnittenen Kegel (1) (klein) & & & \\
\hline T & 1.5.1 & Die Ellipsenkonstruktion & & & \\
\hline T & 1.5.2 & Die Ellipse am angeschnittenen Kegel (1) (groß) & & & \\
\hline T & 1.5.3 & Die Ellipse am angeschnittenen Kegel (2) (groß) & & & \\
\hline T & 1.5.4 & Die Ellipse am angeschnittenen Kegel (3) (groß) & & & \\
\hline T & 1.5.5 & Die Ellipse am angeschnittenen Kegel (2) (klein) & & & \\
\hline T & 1.5.6 & Die Ellipse am angeschnittenen Kegel (2) (klein) & & & \\
\hline T & 1.6.1 & Großer Aufbewahrungskegel & & & \\
\hline T & 1.6.2 & Großer Aufbewahrungskegel & & & \\
\hline T & 1.6.3 & Kleiner Aufbewahrungskegel+D10 & & & \\
\hline T & 2.1.1 & Die Parabelkonstruktion & & & \\
\hline T & 2.1.2 & Die Parabelkonstruktion & & & \\
\hline T & & Albrecht Dürer und die Parabel (4 Seiten) & & & \\
\hline T & 2.2.1 & Die Parabel am angeschnittenen Kegel (groß) & & & \\
\hline T & 2.2.2 & Die Parabel am angeschnittenen Kegel (groß) & & & \\
\hline T & 2.2.3 & Die Parabel am angeschnittenen Kegel (groß) & & & \\
\hline T & 2.3.1 & Der Kegelabschnitt mit der Parabel & & & \\
\hline T & 2.4.1 & Die Parabel am angeschnittenen Kegel (klein) & & & \\
\hline T & 2.4.2 & Die Parabel am angeschnittenen Kegel (klein) & & & \\
\hline T & 3.1.1 & Die Lage der Hyperbeln und ihre Benennungen & & & \\
\hline T & 3.1.2 & Die Lage der Hyperbeln und ihre Benennungen & & & \\
\hline T & 3.1,3 & Möglichkeiten für den Bau eines Doppelkegels & & & \\
\hline T & & Albrecht Dürer und die Hyperbel (2 Seiten) & & & \\
\hline T & 3.2.1 & Ein Hyperbel-Ast am angeschnittenen Kegel (1) & & & \\
\hline T & 3.2.2 & Die Konstruktion eines Kegelmodells & & & \\
\hline T & 3.2.3a & bis 3.2.6a Großes Modell (1) & & & \\
\hline T & 3.2.3b & bis 3.2.4b Kleines Modell (1) & & & \\
\hline T & 3.3.1 & Ein Hyperbel-Ast am angeschnittenen Kegel (2) & & & \\
\hline T & 3.3.2a & bis 3.3.4a Großes Modell (2) & & & \\
\hline T & 3.3.2b & bis 3.3.3b Kleines Modell (2) & & & \\
\hline T & 3.4.1 & Hyperbelabschnitte am rechtwinkeligen Doppelkegel & & & \\
\hline T & 3.4.2 & bis 3.4.3 Das Modell dazu & & & \\
\hline T & 3.5.1 & Unterschiedl. große Hyperbelabschnitte am Doppelkegel & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 13}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline T & 3.5.2 & bis 3.5.5 Das Modell dazu & & & \\
\hline T & 3.6.1 & Unterschiedl große Hyperbelabschnitte am rechtw. Doppelkegel & & & \\
\hline T & 3.6.2 & bis 3.6.4 Das Modell dazu & & & \\
\hline T & 4.1 & bis 4.3 Schnitt senkrecht durch die Spitze & & & \\
\hline T & 5.1 & bis 5.5 Schnitt in 1/2 Höhe, Stumpf und Spitze & & & \\
\hline T & 6.1 & Luftdruckrakete, Anleitung & & & \\
\hline T & 6.2 & Luftdruckrakete, Bauplan dazu & & & \\
\hline U & \multicolumn{5}{|r|}{Meth.-didakt. Vorbem. zu den 5 Platonischen und den 13 spez. Archimedischen Körpern} \\
\hline U & \multicolumn{5}{|c|}{Altgriechische Zahlen und Silben in der Geometrie} \\
\hline U & 1.1.1 & Tetraeder & & & \\
\hline U & 1.1.2 & Tetraeder (für Hexaeder U 1.2.1) & & & \\
\hline U & 1.1.3 & Regelmäßiger Tetraeder als Klappmodell & & & \\
\hline U & 1.1.4 & Vergleich: Regelmäßiger und Allgemeiner Tetraeder & & & \\
\hline U & 1.1.5 & Gleichschenkelig rechtwinkeliger Tetraeder & & & \\
\hline U & 1.1.6 & Klappmodell eines gleichschenkelig rechtw. Tetraeders & & & \\
\hline U & 1.1.7 & Unregelmäßiger Tetraeder & & & \\
\hline U & 1.2.1 & Hexaeder (mit eingeschriebenem Tetraeder U 1.1.2) & & & \\
\hline U & 1.2.2 & Hexaeder (=Würfel) & & & \\
\hline U & 1.3.1 & Oktaeder (1) & & & \\
\hline U & 2.3.1.2 & Abgest. Ikosaeder (Fußballkörper) 2. u. 3. Teil & & & \\
\hline U & 2.3.1.3 & Abgestumpfter Ikosaeder: 12 Spitzen & & & \\
\hline U & 2.3.2.1 & Abgest. Ikosaeder (Fußballkörper), Variante & & & \\
\hline U & 2.4.1 & Abgestumpfter Hexaeder (=Würfel) & & & \\
\hline U & 2.4.2 & Abgestumpfter Hexaeder (=Würfel): 8 Ecken & & & \\
\hline U & 2.5.1 & Abgestumpfter Dodekaeder & & & \\
\hline U & 2.5.2 & Abgestumpfter Dodekaeder: 20 Ecken & & & \\
\hline U & 2.6.1 & (Kleiner) Rhombenkub(o)oktaeder & & & \\
\hline U & 2.6.2 & (Kleiner) Rhombenkub(o)oktaeder: 8 Spitzen & & & \\
\hline U & 2.7.1 & Kub(o)oktaeder & & & \\
\hline U & 2.7.2 & Kub(o)oktaeder: 8 Spitzen & & & \\
\hline U & 2.8.1 & Ikosidodekaeder & & & \\
\hline U & 2.8.2 & Ikosidodekaeder: 20 Spitzen & & & \\
\hline U & 2.9.1 & Abgeschrägter Hexaeder, 1. Variante & & & \\
\hline U & 2.9.2 & Abgeschrägter Hexaeder, 2. Variante & & & \\
\hline U & 2.9.3 & Abgeschrägter Hexaeder: 8 Spitzen+D38 & & & \\
\hline U & 2.10 .1 & Abgeschrägter Dodekaeder, 1. Teil & & & \\
\hline U & 2.10.2 & Abgeschrägter Dodekaeder, 2. Teil & & & \\
\hline U & 2.11.1 & Abgest. Kub(o)oktaeder = großer Rhombenkuboktaeder & & & \\
\hline U & 2.12 .1 & Abgestumpfter (großer) Ikosidodekaeder & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 14}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline U & 2.13.1.1 & (Kleiner) Rhombenikosidodekaeder ccw, 1. Teil & & & \\
\hline U & 2.13.1.2 & (Kleiner) Rhombenikosidodekaeder ccw, 2. u. 3. Teil & & & \\
\hline U & 2.13.2.1 & (Kleiner) Rhombenikosidodekaeder cw, 1. Teil & & & \\
\hline U & 2.13.2.2 & (Kleiner) Rhombenikosidodekaeder cw, 2. u. 3. Teil & & & \\
\hline U & & Die Catalanis & chen Kör & rper & \\
\hline U & 3.1.1 & Triakis-Tetraeder & & & \\
\hline U & 3.1.2 & Triakis-Tetraeder & & & \\
\hline U & 3.2.1 & Rhomben-Dodekaeder & & & \\
\hline U & 3.3.1 & Triakis-Oktaeder & & & \\
\hline U & 3.3.2 & Triakis-Oktaeder & & & \\
\hline U & 3.4.1 & Tetrakis-Hexaeder & & & \\
\hline U & 3.5.1 & Deltoidal-Ikositetraeder & & & \\
\hline U & 3.6.1 & Hexakisoktaeder & & & \\
\hline U & 3.7.1 & Pentagon-Ikositetraeder & & & \\
\hline U & 3.7.2 & Pentagon-Ikositetraeder & & & \\
\hline U & 3.8.1 & Rhomben-Triakontaeder & & & \\
\hline U & 3.9.1 & Triakis-Ikosaeder & & & \\
\hline U & 3.10.1 & Pentakis-Dodekaeder & & & \\
\hline U & 3.11.1 & Deltoidal-Hexakontaeder & & & \\
\hline U & 3.12.1 & Hexakis-Ikosaeder (Disdyakis-Triakontaeder) & & & \\
\hline U & 3.13.1 & Pentagon-Hexakontaeder & & & \\
\hline V & & Meth.-didakt. Vorbem. zu den geom. Körpern & aus de & CD & DI für GZ / DC \\
\hline V & 1.1 & Der geometrische Raum, 1.Variante & & & \\
\hline V & 1.2 & Der geometrische Raum, 2.Variante & & & \\
\hline V & 2.1 & Körper zu "Risslesen 1" & & & \\
\hline V & 2.2 & Körper zu "Risslesen 1" & & & \\
\hline V & 2.3 & Körper zu "Risslesen 1" & & & \\
\hline V & 2.4 & Körper zu "Risslesen 1" & & & \\
\hline V & 2.5 & Körper zu "Risslesen 1" & & & \\
\hline V & 2.6 & Körper zu "Risslesen 1" & & & \\
\hline V & 2.7 & Körper zu "Risslesen 1" & & & \\
\hline V & 2.8 & Körper zu "Risslesen 1" & & & \\
\hline V & 3.1 & Körper zu "Risslesen 2" & & & \\
\hline V & 3.2 & Körper zu "Risslesen 2" & & & \\
\hline V & 4.1 & Körper zu "Risslesen 3" & & & \\
\hline V & 4.2 & Körper zu "Risslesen 3" & & & \\
\hline V & 5.1 & Körper zu "Risslesen 4" & & & \\
\hline V & 5.2 & Körper zu "Risslesen 4" & & & \\
\hline V & 6.1 & Körper zu "Risslesen 5" & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 15}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline V & 6.2 & Körper zu "Risslesen 5" & & & \\
\hline V & 6.3 & Körper zu "Risslesen 5" & & & \\
\hline V & 6.4 & Körper zu "Risslesen 5" & & & \\
\hline V & 6.5 & Körper zu "Risslesen 5" & & & \\
\hline V & 7.1 & Körper zu "Werkstücke" & & & \\
\hline V & 7.2 & Körper zu "Werkstücke" & & & \\
\hline V & 8.1 & Körper zu "Ansichtssache" & & & \\
\hline V & 8.2 & Körper zu "Ansichtssache" & & & \\
\hline V & 8.3 & Körper zu "Ansichtssache" & & & \\
\hline V & 8.4 & Körper zu "Ansichtssache" & & & \\
\hline V & 9.1 & Körper zu "Modellieren" & & & \\
\hline V & 10.1 & Körper zu "Ergänzungskörper 1" & & & \\
\hline V & 11.1 & Körper zu "Ergänzungskörper 1" & & & \\
\hline V & 11.2 & Körper zu "Ergänzungskörper 1" & & & \\
\hline V & 12.1 & Körper zu "Axo" & & & \\
\hline V & 12.2 & Körper zu "Axo" & & & \\
\hline V & 12.3 & Körper zu "Axo" & & & \\
\hline V & 13.1 & Körper zu "Euler" & & & \\
\hline V & 13.2 & Körper zu "Euler" & & & \\
\hline V & 13.4 & Körper zu "Euler" & & & \\
\hline V & 13.5 & Körper zu "Euler" & & & \\
\hline V & 13.6 & Körper zu "Euler" & & & \\
\hline V & 14.1 & "sears building" & & & \\
\hline V & 15.1 & Körper zu "Ergänzen von Rissen" & & & \\
\hline V & 15.2 & Körper zu "Ergänzen von Rissen" & & & \\
\hline V & 16.1 & Körper zu "Risse 2" & & & \\
\hline V & 16.2 & Körper zu "Risse 2" & & & \\
\hline V & 16.3 & Körper zu "Risse 2" & & & \\
\hline V & 16.4 & Körper zu "Risse 2" & & & \\
\hline V & 16.5 & Körper zu "Risse 2" & & & \\
\hline V & 16.6 & Körper zu "Risse 2" & & & \\
\hline V & 16.7 & Körper zu "Risse 2" & & & \\
\hline V & 17.1 & "Dachform" & & & \\
\hline V & 18.1 & "Andere Modelle" & & & \\
\hline V & 18.2 & "Andere Modelle" & & & \\
\hline W & \multicolumn{5}{|r|}{Method.-didakt. Vorbemerkungen: Modelle der 32 Kristallklassen} \\
\hline W & 1.1.1 & kubisches System: Tetrakishexaeder & & & \\
\hline W & 1.1.2 & kubisches System: Rhombendodekaeder & & & \\
\hline W & 1.2 & kubisches System: Pentagonikositetraeder & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flăchen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Mantred.Pfennich@aan.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 16}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline W & 1.3 & kubisches System: Disdodekaeder & & & \\
\hline W & 1.4 & kubisches System: Hexakistetraeder & & & \\
\hline W & 1.5 & kubisches System: Pentagondodekaeder & & & \\
\hline W & 2.1 & tetragonales System: Ditetragonale Dipyramide & & & \\
\hline W & 2.2 & tetragonales System: Tetragonales Trapezoeder & & & \\
\hline W & 2.3 & tetragonales System: Tetragonale Dipyramide & & & \\
\hline W & 2.4 & tetragonales System: Skalenoeder & & & \\
\hline W & 2.5 & tetragonales System: Tetragonales Disphenoid & & & \\
\hline W & 2.6 & tetragonales System: DitetragonalePyramide & & & \\
\hline W & 2.7 & tetragonales System: Tetragonale Pyramide & & & \\
\hline W & 3.1 & hexagonales System: Dihexagonale Dipyramide & & & \\
\hline W & 3.2 & hexagonales System: HexagonalerTrapezoeder & & & \\
\hline W & 3.3 & hexagonales System: Hexagonale Dipyramide & & & \\
\hline W & 3.4.1 & hexagonales System: Ditrigonale Dipyramide (1) & & & \\
\hline W & 3.4.2 & hexagonales System: Ditrigonale Dipyramide (2) & & & \\
\hline W & 3.5 & hexagonales System: Trigonale Dipyramide & & & \\
\hline W & 3.6 & hexagonales System: Dihexagonale Pyramide & & & \\
\hline W & 3.7 & hexagonales System: Hexagonale Pyramide & & & \\
\hline W & 4.1 & trigonales System: Ditrigonaler Skalenoeder & & & \\
\hline W & 4.2 & trigonales System: Ditrigonaler Trapezoeder & & & \\
\hline W & 4.3 & trigonales System: Ditrigonaler Rhomboeder & & & \\
\hline W & 4.4 & trigonales System: Ditrigonale Pyramide & & & \\
\hline W & 4.5 & trigonales System: Trigonale Pyramide & & & \\
\hline W & 5.1 & orthorhomb. System: Rhombische Dipyramide & & & \\
\hline W & 5.2 & orthorhomb. System: Rhombisches Disphenoid & & & \\
\hline W & 5.3 & orthorhomb. System: Rhombische Pyramide & & & \\
\hline W & 6.1 & monoklines System: Rhombisches Prisma & & & \\
\hline W & 6.2 & monoklines System: Rhombisches Doma & & & \\
\hline W & 6.3 & monoklines System: Sphenoid & & & \\
\hline W & 7.1 & triklines System: Trikline Pinakoide & & & \\
\hline W & 7.2 & triklines System: Trikline Pedien & & & \\
\hline X & \multicolumn{5}{|r|}{Meth.-didakt. Vorbemerkungen zu den Spielen (X), den admin. Hilfen (Y) und den Ergänzungen (Z)} \\
\hline X & 1.1 & Körper-Memory 1 & & & \\
\hline X & 1.2 & Antwortkarten für Körper - Memory 1 & & & \\
\hline X & 1.3 & Viereckflächen - Memory & & & \\
\hline X & 1.4 & Viereckflächen - Memory & & & \\
\hline X & 2.1 & Kopiervorlage für selbstgemachtes Memory & & & \\
\hline X & 2.2 & Kopiervorlage für selbstgemachtes Domino & & & \\
\hline X & 3.1 & Zahlensilben - Domino & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" © Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 17}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline \(\mathbf{X}\) & 3.2 & Formel - Domino & & & \\
\hline X & 3.3 & Pythagoras - Domino & & & \\
\hline X & 3.4 & Flächen - Domino & & & \\
\hline Y & \multicolumn{5}{|c|}{Method-didakt. Vorbemerkungen: Administrative Hilfen} \\
\hline Y & 1.1 & Aufgabenkontrollblatt 1 (für Aufgabenheft 1) & & & \\
\hline Y & 1.2 & Aufgabenkontrollblatt 2 (für Aufgabenheft 2) & & & \\
\hline Y & 2.1 & Aufgabenübersichtsblatt für die Klasse & & & \\
\hline Y & 2.2 & Schularbeitenplan (Prüfungsarbeiten) & & & \\
\hline Y & 3.1 & Jahresplanung Seite 1 & & & \\
\hline Y & 3.2 & Jahresplanung Seite 2, \(3 \ldots\) & & & \\
\hline Z & \multicolumn{5}{|r|}{Meth.-didakt. Vorbemerkungen: Interessante ergänzende Blätter} \\
\hline Z & 1.1 & \(\mathrm{cm}^{2}\) - Netz für eigene Konstruktionen & & & \\
\hline Z & 1.2 & Blatt für Übungen des Koordinatensystems & & & \\
\hline Z & 2.1.1 & Einfach verschobener Würfel & & & \\
\hline Z & 2.1.2 & Zweifach verschobener Würfel & & & \\
\hline Z & 3.1.1 & Einfach verschobener Quader (Parallelepiped) & & & \\
\hline Z & 3.1.2 & Zweifach verschobener Quader & & & \\
\hline Z & 4.1.1 & Schräger Schnitt an einem Zylinder & & & \\
\hline Z & 4.1.2 & Die Abwicklung des Zylindermantels & & & \\
\hline Z & 4.1.3 & Modell: Schräger Schnitt an einem Zylinder (1) & & & \\
\hline Z & 4.1.4 & Der Zylinderabschnitt (1) & & & \\
\hline Z & 4.1.5 & Aufbewahrungsdose (1) & & & \\
\hline Z & 4.2.1 & Schräger Schnitt an einem Zylinder (2) & & & \\
\hline Z & 4.2.2 & Die Abwicklung des Zylindermantels (2) & & & \\
\hline Z & 4.2.3 & Modell: Schräger Schnitt an einem Zylinder (2) & & & \\
\hline Z & 4.2.4 & Der Zylinderabschnitt (2) & & & \\
\hline Z & 4.2.5 & Aufbewahrungsdose (2) & & & \\
\hline Z & 4.3.1 & Keilförmig schräg geschnittener Zylinder & & & \\
\hline Z & 4.3.2 & Die Abwicklung des Mantels & & & \\
\hline Z & 4.3.3 & Keilförmig geschnittener Zylinder & & & \\
\hline Z & 4.3.4 & Aufbewahrungsdose für 4.3 und 4.4 & & & \\
\hline Z & 4.4.1 & Keilförmig eingeschnittener Zylinder & & & \\
\hline Z & 4.4.2 & Die Abwicklung des Zylindermantels & & & \\
\hline Z & 4.4.3 & Keilförmig eingeschnittener Zylinder & & & \\
\hline Z & 5.1 & 2 Pyramiden bilden das Drittel eines Würfels & & & \\
\hline Z & 5.2 & Behälter für die 3 Drittel & & & \\
\hline Z & 6.1 & Das Pseudo-Oloid - ein eigenartiger Wackelkörper & & & \\
\hline Z & 6.2 & Das Pseudo-Oloid - ein eigenartiger Wackelkörper & & & \\
\hline \multicolumn{6}{|r|}{Aus: "Geometrische Flächen und Körper zum Be - greifen" "Geometrie von a bis Z" \(\bigcirc\) Manfred Pfennich (Manfred.Pfennich@aon.at)} \\
\hline
\end{tabular}

\section*{Inhaltsverzeichnis 18}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kap & Blatt & Blattinhalt & SchSt & LGp & Anmerkungen \\
\hline Z & 6.3 & Das Oloid von Paul Schatz & & & \\
\hline Z & 6.4 & Der umstülpbare Würfel von Paul Schatz (Teil 1) & & & \\
\hline Z & 6.5 & Der umstülpbare Würfel von Paul Schatz (Teil 2) & & & \\
\hline Z & 6.6 & Riegelkörper des umstülpbaren Würfels & & & \\
\hline Z & 6.7 & Hexa-Sphericon nach Christoph Pöppe & & & \\
\hline Z & 6.8 & Das Sphericon nach Colin Roberts & & & \\
\hline Z & 6.9 & Das kleine Sphericon & & & \\
\hline Z & 6.10 & Das kleine Sphericon nach Christoph Pöppe & & & \\
\hline Z & 7.1. & Ein interessanter Schnitt durch einen Würfel & & & \\
\hline Z & 7.2 & Behälter für die 2 Würfelhälften & & & \\
\hline Z & 8.1 & Ein gleichs. Prisma, zerlegt in 3 volumengleiche Teile & & & \\
\hline Z & 8.2 & Behälter für die 3 Prismenteile & & & \\
\hline Z & 8.3 & Ein ungleichs. Prisma, zerlegt in 3 volumengleiche Teil & & & \\
\hline Z & 8.4 & Ein ungleichs. Prisma, zerlegt in 3 volumengleiche Teil & & & \\
\hline Z & 9.1 & Dekorative Polyeder als Schmuck & & & \\
\hline Z & 9.2 & Dekor-Dreiecke für dekorative Modelle & & & \\
\hline Z & 9.3 & Dekor-Quadrate für dekorative Modelle & & & \\
\hline Z & 9.4 & Dekor-Fünfecke für dekorative Modelle & & & \\
\hline Z & 9.5 & Dekor-Sechsecke für dekorative Modelle & & & \\
\hline Z & 9.6 & Dekor-Achtecke für dekorative Modelle & & & \\
\hline Z & 9.7 & Dekor-Zehneck für dekorative Modelle & & & \\
\hline Z & 10.1 & Achteckige Geschenkschachtel & & & \\
\hline Z & 10.2 & Deckel für die achteckige Geschenkschachtel & & & \\
\hline Z & 11.1 & Vierstrahliger tanzender Stern & & & \\
\hline Z & 11.2 & Sechsstrahliger tanzender Stern & & & \\
\hline Z & 12.1.1 & bis 12.1.3 Grundfläche 16/18/20-strahliger & & & \\
\hline Z & & "Schwiegermutterstuhl"-Kaktus & & & \\
\hline Z & 12.2a & bis 12.2 b Rippen für den "Schwiegermutterstuhl" & & & \\
\hline Z & & für Modelle in A4 und A3 & & & \\
\hline Z & 13.1/2 & Gehäuse der Lochkamera & & & \\
\hline Z & 13.3 & Frontplatte der Lochkamera & & & \\
\hline Z & 13.4 & Die Mattscheibe & & & \\
\hline Z & 13.5 & Eine "Halskrause" für die Lochkamera & & & \\
\hline Z & 13.6 & Rückwand für die Lochkamera & & & \\
\hline Z & 13.7 & Methodische, mathematische, geometrische Infos & & & \\
\hline Z & 13.8 & bis 13.10 Method. und mathem. Infos zur Belichtung & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & Aus: "Ge & ometrische Flächen und Körper zum Be - greifen" "Geometric & von a bis & Z"® M & (Manfred.Pfennich \\
\hline
\end{tabular}

\section*{Begriffe in ,Geometrische Flächen und Körper zum Be-greifen"}

Kopiervorlagensammlung Geometrie
Kopiervorlagen Geometrie
Geometrische Flächen und Körper zum Be - greifen
Geometrische Flächen und Körper zum Begreifen
Geometrische Modelle zum Begreifen
Geometrische Modelle zum Angreifen
Innere Differenzierung im Mathematikunterricht
Leistungsdifferenzierung im Mathematikunterricht
Leistungsdifferenzierung im Geometrieunterricht
Geometrie verstehen
Geometrie von A bis Z
Von Mikro bis Giga
Von Atto bis Exa
Dekameter
Hektometer
Maßsilben
begreifendes Erarbeiten
Mathematikunterricht der Sekundarstufe 1 und 2
Maßreihen
Flächenarten
Würfelnetze
Quadernetze
zusammengesetzte Körper
Prismen
Pythagoräischer Lehrsatz
Pyramidennetze
Quadratische Pyramiden
Rechteckige Pyramiden
Pyramidenstumpf
Beweis für die Volumenformel der Pyramiden
Kathetensatz
Höhensatz
Kreis und Zylinder
Kegel
Kegelstumpf
Kegelschnitte
Modell für Kegelschnitte
Die platonischen und archimedischen geometrischen Körper
Oloid
Förderung der Feinmotorik
Es gibt viele Modelle für GZ/DG/TZ (zur CD-Rom „Beispiele und Anregungen"der ARGE Didakt. Innovation des Bundesministeriums für Unterricht in Wien)

Modelle der 32 Kristallklassen der Mineralien
Spiele für den Lehrbereich Geometrie
Administrative Hilfen für den Unterricht.
für Supplierunterricht
Für den gesamten Kern- und Erweiterungsbereich des Lehrbereiches Geometrie Formeln selbst erarbeiten
Zum Denken provozieren - zum Lernen motivieren
Vom Be - greifen zum Begreifen
Klebefalze
Geometrische Modelle
Klappmodelle für Geometrie
Fläche des Quadrates
Diagonale des Quadrates
Parallelogramme
Flächenverwandlung
Flächenumwandlung
Deltoid
Drachenviereck
Rhombus
Raute
Trapez
Konstruktion von Vierecken
Dreiecksverwandlung
Dreiecksumwandlung
Prismenarten
Volumenberechnung von Quadern
Volumenberechnung von Prismen
Volumenberechnung von zusammengesetzten Körpern
Volumenberechnung von Prismen
Volumenberechnung von Pyramiden
Volumenberechnung von Zylindern
Volumenberechnung von Kegeln
Schnitte am Zylinder
Massenmaße
Winkelarten
Winkelmaße
Gon
Neugrad
Winkelfeld

Vollkreiswinkelmesser
Winkelsumme der Dreiecke
Winkelsumme der Vierecke
Vollkreiswinkelmesser mit 400 gon
Quader mit Ausschnitten
Würfel mit Ausschnitten
Zusammengesetztes Prisma
Zusammengesetzte Prismen
Prisma über Vieleck
Prismen über Polygonen
Sechseckiges Prisma
Achteckiges Prisma
Zusammengesetzter Quader mit Bohrung
Trapezförm. Block mit waagrechter Bohrung
Um 90 Grad gedrehtes quadratisches Prisma
Um 45 Grad gedrehtes quadratisches Prisma
Regelmäßiges quadratisches Antiprisma
Allgemeines quadratisches Antiprisma
Regelmäßiges sechseckiges Antiprisma
Allgemeines sechseckiges Antiprisma
Regelmäßiges achteckiges Antiprisma
Allgemeines achteckiges Antiprisma
Quadratisches Prisma, seitlich verschoben
Rechteckiges Prisma, seitlich verschoben
Quadratisches Prisma, diagonal schräg geschnitten
Quadratisches Prisma, diagonal verschoben

Schneidebeweis Pythagoräischer Lehrsatz
Raumdiagonale am Quader
Raumdiagonale am Würfel
Klappmodell rechteckige Pyramide
Klappmodell quadratische Pyramide
Sechseckprisma um 30 Grad gedreht
Sechseckprisma um 120 Grad gedreht

Pyramidenstumpf und Pyramidenspitze in Relation
Kegelstumpf und Kegelspitze in Relation
Kreis, Quadrat und Rechteck im Umfangvergleich
Kreis, Quadrat und Rechteck im Flächenvergleich
Schrägschnitt am Zylinder

Abwicklung des Mantels am schräg geschnittenen Zylinder
Kegelschnitte
Hyperbel als Kegelschnittlinie am Modell
Parabel als Kegelschnittlinie am Modell
Ellipse als Kegelschnittlinie am Modell
Kegelabschnitte
Modelle der Platonischen Körper
Netze der Platonischen Körper
Modelle der Archimedischen Körper
Netze der Archimedischen Körper
Modelle (Netze) für Geometrisches Zeichnen GZ
Modelle (Netze) für Darstellende Geometrie DG
Modelle (Netze) für Technisches Zeichnen (TZ)
Arbeitsgemeinschaft Didaktische Innovation Geometrisches Zeichnen / Darstellende Geometrie ADI GZ/DG

Modelle der 32 Kristallklassen
Netze der Modelle der 32 Kristallklassen
Netz Parallelepiped
Zylinderabschnitt
Dekorative Polyeder als Schmuck
Kubisches System: Hexakisoktaeder
Kubisches System: Pentagonikositetraeder
Kubisches System: Disdodekaeder (=Zweimal-Zwölfflächner)
Kubisches System: Hexakisoktaeder
Kubisches System: Tetraedrisches Pentagondodekaeder
Tetragonales System: Ditetragonale Dipyramide
Tetragonales System: Tetragonales Trapezoeder
Tetragonales System: Tetragonale Dipyramide
Tetragonales System: Tetragonales Skalenoeder
Tetragonales System: Tetragonales Disphenoid
Tetragonales System: Ditetragonale Pyramide
Tetragonales System: Tetragonale Pyramide
Hexagonales System: Dihexagonale Dipyramide
Hexagonales System: Hexagonales Trapezoeder
Hexagonales System: Hexagonale Dipyramide
Hexagonales System: Ditrigonale Dipyramide

Hexagonales System: Trigonale Dipyramide
Hexagonales System: Dihexagonale Pyramide
Hexagonales System: Hexagonale Pyramide
Trigonales System: Ditrigonaler Skalenoeder
Trigonales System: Ditrigonales Rhomboeder
Trigonales System: Ditrigonale Pyramide
Trigonales System: Trigonale Pyramide
Orthorhombisches System: Rhombische Dipyramide
Orthorhombisches System: Rhombisches Disphenoid
Monoklines System: Rhombisches Prisma
Monoklines System: Doma
Monoklines System: Sphenoid
Triklines System: Triklines Pinakoid
Triklines System: Trikline Pedien
Tetraeder (engl.:Tetrahedron)
Hexaeder (Hexahedron)
Oktaeder (Oktahedron)
Dodekaeder (Dodekahedron)
Ikosaeder (Ikosahedron)
Abgestumpfter Tetraeder (engl.: Truncated tetrahedron)
Abgestumpfter Oktaeder (Truncated octahedron)
Abgestumpfter Ikosaeder oder Fußballkörper (Truncated icosahedron)
Abgestumpfter Hexaeder (Truncated hexahedron)
Abgestumpfter Dodekaeder (Truncated dodecahedron)
Kleiner Rhombenkuboktaeder (Truncated octahedron)
Kub(o)oktaeder (Cuboctahedron)
Ikosidodekaeder (Icosidodecahedron)
Abgeschrägter Hexaeder (zwei im Drehungssinn spiegelbildlich entgegengesetzte
Varianten) (Snubhexahedron ccw and cw)
Abgeschrägter Dodekaeder (zwei spiegelbildlich entgegengesetzte Varianten)
(Snubdodecahedron ccw and cw)
Großer Rhombenkub(o)oktaeder (Truncated cuboctahedron)
Abgestumpfter (bzw. Großer) Rhombenikosidodekaeder (Truncated
icosidodecahedron), Kleiner Rhombenikosidodekaeder (Rhombicosidodecahedron)
ein einfach verschobener Würfel
ein zweifach verschobener Würfel
Parallelepiped
schräger Schnitt an einem Zylinder
keilförmig eingeschnittener Zylinder
2 Pyramiden bilden das Drittel eines Würfels
das Pseudo-Oloid
Das Oloid
Ein gleichseitiges Prisma, zerlegt in 3 volumengleiche Teile
Ein ungleichseitiges Prisma, zerlegt in 3 volumengleiche Teile dekorative Polyeder achteckige Geschenkschachtel vierstrahliger tanzender Stern
sechsstrahliger tanzender Stern
quadratische und kubische Funktion
angloamerikanische Maße imperial mesuring system
metrisches Maßsystem
duale Körper```

[^0]: Die Vervielfältigung der Arbeitsblätter ist durch den Download des Werkes nur für den Schulgebrauch gestattet. Die Weitergabe der Dateien ist urheberrechtlich untersagt und wäre besonders unfair gegenüber autistischen Kindern. Für Veröffentlichung: Quellenangabe

[^1]: Die Vervielfältigung der Arbeitsblätter ist durch den Download des Werkes nur für den Schulgebrauch gestattet. Die Weitergabe der Dateien ist urheberrechtlich untersagt und wäre besonders unfair gegenüber autistischen Kindern. Für Veröffentlichung: Quellenangabe

[^2]: AAus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

[^3]: Gemeint sind:
 ines Parallelogramm e) unregelmäßiges Viereck mit normalstehenden Diagonalen

[^4]: AAus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

[^5]: AAus: Geometrische Flächen und Körper zum "Be - greifen" © Manfred Pfennich (Manfred.Pfennich@aon.at) A-8583 Edelschrott

